Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > epini | GIF version |
Description: Any set is equal to its preimage under the converse epsilon relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
epini.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
epini | ⊢ (◡ E “ {𝐴}) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epini.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | vex 2712 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eliniseg 4949 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 E 𝐴)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 E 𝐴) |
5 | 1 | epelc 4246 | . . 3 ⊢ (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴) |
6 | 4, 5 | bitri 183 | . 2 ⊢ (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 ∈ 𝐴) |
7 | 6 | eqriv 2151 | 1 ⊢ (◡ E “ {𝐴}) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1332 ∈ wcel 2125 Vcvv 2709 {csn 3556 class class class wbr 3961 E cep 4242 ◡ccnv 4578 “ cima 4582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ral 2437 df-rex 2438 df-v 2711 df-sbc 2934 df-un 3102 df-in 3104 df-ss 3111 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-eprel 4244 df-xp 4585 df-cnv 4587 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |