ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  epini GIF version

Theorem epini 5011
Description: Any set is equal to its preimage under the converse epsilon relation. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
epini.1 𝐴 ∈ V
Assertion
Ref Expression
epini ( E “ {𝐴}) = 𝐴

Proof of Theorem epini
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 epini.1 . . . 4 𝐴 ∈ V
2 vex 2752 . . . . 5 𝑥 ∈ V
32eliniseg 5010 . . . 4 (𝐴 ∈ V → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴))
41, 3ax-mp 5 . . 3 (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴)
51epelc 4303 . . 3 (𝑥 E 𝐴𝑥𝐴)
64, 5bitri 184 . 2 (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥𝐴)
76eqriv 2184 1 ( E “ {𝐴}) = 𝐴
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1363  wcel 2158  Vcvv 2749  {csn 3604   class class class wbr 4015   E cep 4299  ccnv 4637  cima 4641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-eprel 4301  df-xp 4644  df-cnv 4646  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator