![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > epini | GIF version |
Description: Any set is equal to its preimage under the converse epsilon relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
epini.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
epini | ⊢ (◡ E “ {𝐴}) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | epini.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | vex 2752 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | eliniseg 5010 | . . . 4 ⊢ (𝐴 ∈ V → (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 E 𝐴)) |
4 | 1, 3 | ax-mp 5 | . . 3 ⊢ (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 E 𝐴) |
5 | 1 | epelc 4303 | . . 3 ⊢ (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴) |
6 | 4, 5 | bitri 184 | . 2 ⊢ (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 ∈ 𝐴) |
7 | 6 | eqriv 2184 | 1 ⊢ (◡ E “ {𝐴}) = 𝐴 |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1363 ∈ wcel 2158 Vcvv 2749 {csn 3604 class class class wbr 4015 E cep 4299 ◡ccnv 4637 “ cima 4641 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-un 3145 df-in 3147 df-ss 3154 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-br 4016 df-opab 4077 df-eprel 4301 df-xp 4644 df-cnv 4646 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |