Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  epini GIF version

Theorem epini 4950
 Description: Any set is equal to its preimage under the converse epsilon relation. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
epini.1 𝐴 ∈ V
Assertion
Ref Expression
epini ( E “ {𝐴}) = 𝐴

Proof of Theorem epini
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 epini.1 . . . 4 𝐴 ∈ V
2 vex 2712 . . . . 5 𝑥 ∈ V
32eliniseg 4949 . . . 4 (𝐴 ∈ V → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴))
41, 3ax-mp 5 . . 3 (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴)
51epelc 4246 . . 3 (𝑥 E 𝐴𝑥𝐴)
64, 5bitri 183 . 2 (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥𝐴)
76eqriv 2151 1 ( E “ {𝐴}) = 𝐴
 Colors of variables: wff set class Syntax hints:   ↔ wb 104   = wceq 1332   ∈ wcel 2125  Vcvv 2709  {csn 3556   class class class wbr 3961   E cep 4242  ◡ccnv 4578   “ cima 4582 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-eprel 4244  df-xp 4585  df-cnv 4587  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator