ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iniseg Unicode version

Theorem iniseg 5055
Description: An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.)
Assertion
Ref Expression
iniseg  |-  ( B  e.  V  ->  ( `' A " { B } )  =  {
x  |  x A B } )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    V( x)

Proof of Theorem iniseg
StepHypRef Expression
1 elex 2783 . 2  |-  ( B  e.  V  ->  B  e.  _V )
2 vex 2775 . . . 4  |-  x  e. 
_V
32eliniseg 5053 . . 3  |-  ( B  e.  _V  ->  (
x  e.  ( `' A " { B } )  <->  x A B ) )
43abbi2dv 2324 . 2  |-  ( B  e.  _V  ->  ( `' A " { B } )  =  {
x  |  x A B } )
51, 4syl 14 1  |-  ( B  e.  V  ->  ( `' A " { B } )  =  {
x  |  x A B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   {cab 2191   _Vcvv 2772   {csn 3633   class class class wbr 4045   `'ccnv 4675   "cima 4679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-cnv 4684  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689
This theorem is referenced by:  dfse2  5056
  Copyright terms: Public domain W3C validator