ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddnepnf Unicode version

Theorem xaddnepnf 9927
Description: Closure of extended real addition in the subset  RR*  /  { +oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnepnf  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )

Proof of Theorem xaddnepnf
StepHypRef Expression
1 xrnepnf 9847 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( A  e.  RR  \/  A  = -oo ) )
2 xrnepnf 9847 . . . 4  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  <->  ( B  e.  RR  \/  B  = -oo ) )
3 rexadd 9921 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
4 readdcl 8000 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
53, 4eqeltrd 2270 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  e.  RR )
65renepnfd 8072 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =/= +oo )
7 oveq2 5927 . . . . . . 7  |-  ( B  = -oo  ->  ( A +e B )  =  ( A +e -oo ) )
8 rexr 8067 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
9 renepnf 8069 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= +oo )
10 xaddmnf1 9917 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
118, 9, 10syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
127, 11sylan9eqr 2248 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  = -oo )
13 mnfnepnf 8077 . . . . . . 7  |- -oo  =/= +oo
1413a1i 9 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  -> -oo  =/= +oo )
1512, 14eqnetrd 2388 . . . . 5  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  =/= +oo )
166, 15jaodan 798 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = -oo ) )  ->  ( A +e B )  =/= +oo )
172, 16sylan2b 287 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  =/= +oo )
18 oveq1 5926 . . . . 5  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
19 xaddmnf2 9918 . . . . 5  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
2018, 19sylan9eq 2246 . . . 4  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  = -oo )
2113a1i 9 . . . 4  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> -oo  =/= +oo )
2220, 21eqnetrd 2388 . . 3  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  =/= +oo )
2317, 22jaoian 796 . 2  |-  ( ( ( A  e.  RR  \/  A  = -oo )  /\  ( B  e. 
RR*  /\  B  =/= +oo ) )  ->  ( A +e B )  =/= +oo )
241, 23sylanb 284 1  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2164    =/= wne 2364  (class class class)co 5919   RRcr 7873    + caddc 7877   +oocpnf 8053   -oocmnf 8054   RR*cxr 8055   +ecxad 9839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971  ax-rnegex 7983
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-xadd 9842
This theorem is referenced by:  xlt2add  9949
  Copyright terms: Public domain W3C validator