Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xaddnepnf | Unicode version |
Description: Closure of extended real addition in the subset . (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xaddnepnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrnepnf 9686 | . 2 | |
2 | xrnepnf 9686 | . . . 4 | |
3 | rexadd 9757 | . . . . . . 7 | |
4 | readdcl 7859 | . . . . . . 7 | |
5 | 3, 4 | eqeltrd 2234 | . . . . . 6 |
6 | 5 | renepnfd 7929 | . . . . 5 |
7 | oveq2 5833 | . . . . . . 7 | |
8 | rexr 7924 | . . . . . . . 8 | |
9 | renepnf 7926 | . . . . . . . 8 | |
10 | xaddmnf1 9753 | . . . . . . . 8 | |
11 | 8, 9, 10 | syl2anc 409 | . . . . . . 7 |
12 | 7, 11 | sylan9eqr 2212 | . . . . . 6 |
13 | mnfnepnf 7934 | . . . . . . 7 | |
14 | 13 | a1i 9 | . . . . . 6 |
15 | 12, 14 | eqnetrd 2351 | . . . . 5 |
16 | 6, 15 | jaodan 787 | . . . 4 |
17 | 2, 16 | sylan2b 285 | . . 3 |
18 | oveq1 5832 | . . . . 5 | |
19 | xaddmnf2 9754 | . . . . 5 | |
20 | 18, 19 | sylan9eq 2210 | . . . 4 |
21 | 13 | a1i 9 | . . . 4 |
22 | 20, 21 | eqnetrd 2351 | . . 3 |
23 | 17, 22 | jaoian 785 | . 2 |
24 | 1, 23 | sylanb 282 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1335 wcel 2128 wne 2327 (class class class)co 5825 cr 7732 caddc 7736 cpnf 7910 cmnf 7911 cxr 7912 cxad 9678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4083 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-cnex 7824 ax-resscn 7825 ax-1re 7827 ax-addrcl 7830 ax-rnegex 7842 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-br 3967 df-opab 4027 df-id 4254 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-iota 5136 df-fun 5173 df-fv 5179 df-ov 5828 df-oprab 5829 df-mpo 5830 df-pnf 7915 df-mnf 7916 df-xr 7917 df-xadd 9681 |
This theorem is referenced by: xlt2add 9785 |
Copyright terms: Public domain | W3C validator |