ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddnepnf Unicode version

Theorem xaddnepnf 9794
Description: Closure of extended real addition in the subset  RR*  /  { +oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnepnf  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )

Proof of Theorem xaddnepnf
StepHypRef Expression
1 xrnepnf 9714 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( A  e.  RR  \/  A  = -oo ) )
2 xrnepnf 9714 . . . 4  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  <->  ( B  e.  RR  \/  B  = -oo ) )
3 rexadd 9788 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
4 readdcl 7879 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
53, 4eqeltrd 2243 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  e.  RR )
65renepnfd 7949 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =/= +oo )
7 oveq2 5850 . . . . . . 7  |-  ( B  = -oo  ->  ( A +e B )  =  ( A +e -oo ) )
8 rexr 7944 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
9 renepnf 7946 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= +oo )
10 xaddmnf1 9784 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
118, 9, 10syl2anc 409 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
127, 11sylan9eqr 2221 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  = -oo )
13 mnfnepnf 7954 . . . . . . 7  |- -oo  =/= +oo
1413a1i 9 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  -> -oo  =/= +oo )
1512, 14eqnetrd 2360 . . . . 5  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  =/= +oo )
166, 15jaodan 787 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = -oo ) )  ->  ( A +e B )  =/= +oo )
172, 16sylan2b 285 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  =/= +oo )
18 oveq1 5849 . . . . 5  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
19 xaddmnf2 9785 . . . . 5  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
2018, 19sylan9eq 2219 . . . 4  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  = -oo )
2113a1i 9 . . . 4  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> -oo  =/= +oo )
2220, 21eqnetrd 2360 . . 3  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  =/= +oo )
2317, 22jaoian 785 . 2  |-  ( ( ( A  e.  RR  \/  A  = -oo )  /\  ( B  e. 
RR*  /\  B  =/= +oo ) )  ->  ( A +e B )  =/= +oo )
241, 23sylanb 282 1  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136    =/= wne 2336  (class class class)co 5842   RRcr 7752    + caddc 7756   +oocpnf 7930   -oocmnf 7931   RR*cxr 7932   +ecxad 9706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850  ax-rnegex 7862
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-xadd 9709
This theorem is referenced by:  xlt2add  9816
  Copyright terms: Public domain W3C validator