ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddnepnf Unicode version

Theorem xaddnepnf 9671
Description: Closure of extended real addition in the subset  RR*  /  { +oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnepnf  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )

Proof of Theorem xaddnepnf
StepHypRef Expression
1 xrnepnf 9595 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( A  e.  RR  \/  A  = -oo ) )
2 xrnepnf 9595 . . . 4  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  <->  ( B  e.  RR  \/  B  = -oo ) )
3 rexadd 9665 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
4 readdcl 7770 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
53, 4eqeltrd 2217 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  e.  RR )
65renepnfd 7840 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =/= +oo )
7 oveq2 5790 . . . . . . 7  |-  ( B  = -oo  ->  ( A +e B )  =  ( A +e -oo ) )
8 rexr 7835 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
9 renepnf 7837 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= +oo )
10 xaddmnf1 9661 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
118, 9, 10syl2anc 409 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
127, 11sylan9eqr 2195 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  = -oo )
13 mnfnepnf 7845 . . . . . . 7  |- -oo  =/= +oo
1413a1i 9 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  -> -oo  =/= +oo )
1512, 14eqnetrd 2333 . . . . 5  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  =/= +oo )
166, 15jaodan 787 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = -oo ) )  ->  ( A +e B )  =/= +oo )
172, 16sylan2b 285 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  =/= +oo )
18 oveq1 5789 . . . . 5  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
19 xaddmnf2 9662 . . . . 5  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
2018, 19sylan9eq 2193 . . . 4  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  = -oo )
2113a1i 9 . . . 4  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> -oo  =/= +oo )
2220, 21eqnetrd 2333 . . 3  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  =/= +oo )
2317, 22jaoian 785 . 2  |-  ( ( ( A  e.  RR  \/  A  = -oo )  /\  ( B  e. 
RR*  /\  B  =/= +oo ) )  ->  ( A +e B )  =/= +oo )
241, 23sylanb 282 1  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332    e. wcel 1481    =/= wne 2309  (class class class)co 5782   RRcr 7643    + caddc 7647   +oocpnf 7821   -oocmnf 7822   RR*cxr 7823   +ecxad 9587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741  ax-rnegex 7753
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-xadd 9590
This theorem is referenced by:  xlt2add  9693
  Copyright terms: Public domain W3C validator