ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddnepnf Unicode version

Theorem xaddnepnf 9933
Description: Closure of extended real addition in the subset  RR*  /  { +oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnepnf  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )

Proof of Theorem xaddnepnf
StepHypRef Expression
1 xrnepnf 9853 . 2  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  <->  ( A  e.  RR  \/  A  = -oo ) )
2 xrnepnf 9853 . . . 4  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  <->  ( B  e.  RR  \/  B  = -oo ) )
3 rexadd 9927 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
4 readdcl 8005 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
53, 4eqeltrd 2273 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  e.  RR )
65renepnfd 8077 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =/= +oo )
7 oveq2 5930 . . . . . . 7  |-  ( B  = -oo  ->  ( A +e B )  =  ( A +e -oo ) )
8 rexr 8072 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
9 renepnf 8074 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= +oo )
10 xaddmnf1 9923 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
118, 9, 10syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e -oo )  = -oo )
127, 11sylan9eqr 2251 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  = -oo )
13 mnfnepnf 8082 . . . . . . 7  |- -oo  =/= +oo
1413a1i 9 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = -oo )  -> -oo  =/= +oo )
1512, 14eqnetrd 2391 . . . . 5  |-  ( ( A  e.  RR  /\  B  = -oo )  ->  ( A +e
B )  =/= +oo )
166, 15jaodan 798 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = -oo ) )  ->  ( A +e B )  =/= +oo )
172, 16sylan2b 287 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  =/= +oo )
18 oveq1 5929 . . . . 5  |-  ( A  = -oo  ->  ( A +e B )  =  ( -oo +e B ) )
19 xaddmnf2 9924 . . . . 5  |-  ( ( B  e.  RR*  /\  B  =/= +oo )  ->  ( -oo +e B )  = -oo )
2018, 19sylan9eq 2249 . . . 4  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  = -oo )
2113a1i 9 . . . 4  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> -oo  =/= +oo )
2220, 21eqnetrd 2391 . . 3  |-  ( ( A  = -oo  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  -> 
( A +e
B )  =/= +oo )
2317, 22jaoian 796 . 2  |-  ( ( ( A  e.  RR  \/  A  = -oo )  /\  ( B  e. 
RR*  /\  B  =/= +oo ) )  ->  ( A +e B )  =/= +oo )
241, 23sylanb 284 1  |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )
)  ->  ( A +e B )  =/= +oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367  (class class class)co 5922   RRcr 7878    + caddc 7882   +oocpnf 8058   -oocmnf 8059   RR*cxr 8060   +ecxad 9845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976  ax-rnegex 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-xadd 9848
This theorem is referenced by:  xlt2add  9955
  Copyright terms: Public domain W3C validator