| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xaddnepnf | Unicode version | ||
| Description: Closure of extended real
addition in the subset |
| Ref | Expression |
|---|---|
| xaddnepnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xrnepnf 9902 |
. 2
| |
| 2 | xrnepnf 9902 |
. . . 4
| |
| 3 | rexadd 9976 |
. . . . . . 7
| |
| 4 | readdcl 8053 |
. . . . . . 7
| |
| 5 | 3, 4 | eqeltrd 2282 |
. . . . . 6
|
| 6 | 5 | renepnfd 8125 |
. . . . 5
|
| 7 | oveq2 5954 |
. . . . . . 7
| |
| 8 | rexr 8120 |
. . . . . . . 8
| |
| 9 | renepnf 8122 |
. . . . . . . 8
| |
| 10 | xaddmnf1 9972 |
. . . . . . . 8
| |
| 11 | 8, 9, 10 | syl2anc 411 |
. . . . . . 7
|
| 12 | 7, 11 | sylan9eqr 2260 |
. . . . . 6
|
| 13 | mnfnepnf 8130 |
. . . . . . 7
| |
| 14 | 13 | a1i 9 |
. . . . . 6
|
| 15 | 12, 14 | eqnetrd 2400 |
. . . . 5
|
| 16 | 6, 15 | jaodan 799 |
. . . 4
|
| 17 | 2, 16 | sylan2b 287 |
. . 3
|
| 18 | oveq1 5953 |
. . . . 5
| |
| 19 | xaddmnf2 9973 |
. . . . 5
| |
| 20 | 18, 19 | sylan9eq 2258 |
. . . 4
|
| 21 | 13 | a1i 9 |
. . . 4
|
| 22 | 20, 21 | eqnetrd 2400 |
. . 3
|
| 23 | 17, 22 | jaoian 797 |
. 2
|
| 24 | 1, 23 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-rnegex 8036 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-pnf 8111 df-mnf 8112 df-xr 8113 df-xadd 9897 |
| This theorem is referenced by: xlt2add 10004 |
| Copyright terms: Public domain | W3C validator |