ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phibndlem Unicode version

Theorem phibndlem 12653
Description: Lemma for phibnd 12654. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibndlem  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
Distinct variable group:    x, N

Proof of Theorem phibndlem
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  ->  x  e.  ( 1 ... ( N  -  1 ) ) )
21a1d 22 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
3 eluzelz 9692 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
4 gcdid 12422 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  gcd  N )  =  ( abs `  N
) )
53, 4syl 14 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  gcd  N )  =  ( abs `  N ) )
6 eluz2nn 9722 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
7 nnre 9078 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  RR )
8 nnnn0 9337 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
98nn0ge0d 9386 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  0  <_  N )
107, 9absidd 11593 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( abs `  N )  =  N )
116, 10syl 14 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  N )  =  N )
125, 11eqtrd 2240 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  gcd  N )  =  N )
13 1re 8106 . . . . . . . . . . 11  |-  1  e.  RR
14 eluz2gt1 9758 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <  N )
15 ltne 8192 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  1  <  N )  ->  N  =/=  1 )
1613, 14, 15sylancr 414 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
1712, 16eqnetrd 2402 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  gcd  N )  =/=  1
)
18 oveq1 5974 . . . . . . . . . 10  |-  ( x  =  N  ->  (
x  gcd  N )  =  ( N  gcd  N ) )
1918neeq1d 2396 . . . . . . . . 9  |-  ( x  =  N  ->  (
( x  gcd  N
)  =/=  1  <->  ( N  gcd  N )  =/=  1 ) )
2017, 19syl5ibrcom 157 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( x  =  N  ->  ( x  gcd  N )  =/=  1 ) )
2120imp 124 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  =  N )  ->  (
x  gcd  N )  =/=  1 )
2221adantlr 477 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  =  N )  ->  ( x  gcd  N )  =/=  1
)
2322neneqd 2399 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  =  N )  ->  -.  (
x  gcd  N )  =  1 )
2423pm2.21d 620 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  =  N )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
25 fzm1 10257 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( x  e.  ( 1 ... N
)  <->  ( x  e.  ( 1 ... ( N  -  1 ) )  \/  x  =  N ) ) )
26 nnuz 9719 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2725, 26eleq2s 2302 . . . . . 6  |-  ( N  e.  NN  ->  (
x  e.  ( 1 ... N )  <->  ( x  e.  ( 1 ... ( N  -  1 ) )  \/  x  =  N ) ) )
2827biimpa 296 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  ->  ( x  e.  ( 1 ... ( N  -  1 ) )  \/  x  =  N ) )
296, 28sylan 283 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 1 ... N
) )  ->  (
x  e.  ( 1 ... ( N  - 
1 ) )  \/  x  =  N ) )
302, 24, 29mpjaodan 800 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 1 ... N
) )  ->  (
( x  gcd  N
)  =  1  ->  x  e.  ( 1 ... ( N  - 
1 ) ) ) )
3130ralrimiva 2581 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  A. x  e.  ( 1 ... N
) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
32 rabss 3278 . 2  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... ( N  -  1 ) )  <->  A. x  e.  ( 1 ... N
) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
3331, 32sylibr 134 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2178    =/= wne 2378   A.wral 2486   {crab 2490    C_ wss 3174   class class class wbr 4059   ` cfv 5290  (class class class)co 5967   RRcr 7959   1c1 7961    < clt 8142    - cmin 8278   NNcn 9071   2c2 9122   ZZcz 9407   ZZ>=cuz 9683   ...cfz 10165   abscabs 11423    gcd cgcd 12389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390
This theorem is referenced by:  phibnd  12654  dfphi2  12657
  Copyright terms: Public domain W3C validator