ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phibndlem Unicode version

Theorem phibndlem 11787
Description: Lemma for phibnd 11788. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibndlem  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
Distinct variable group:    x, N

Proof of Theorem phibndlem
StepHypRef Expression
1 simpr 109 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  ->  x  e.  ( 1 ... ( N  -  1 ) ) )
21a1d 22 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
3 eluzelz 9284 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
4 gcdid 11570 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  gcd  N )  =  ( abs `  N
) )
53, 4syl 14 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  gcd  N )  =  ( abs `  N ) )
6 eluz2nn 9313 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
7 nnre 8684 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  RR )
8 nnnn0 8935 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
98nn0ge0d 8984 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  0  <_  N )
107, 9absidd 10879 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( abs `  N )  =  N )
116, 10syl 14 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  N )  =  N )
125, 11eqtrd 2148 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  gcd  N )  =  N )
13 1re 7729 . . . . . . . . . . 11  |-  1  e.  RR
14 eluz2gt1 9345 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <  N )
15 ltne 7813 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  1  <  N )  ->  N  =/=  1 )
1613, 14, 15sylancr 408 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
1712, 16eqnetrd 2307 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  gcd  N )  =/=  1
)
18 oveq1 5747 . . . . . . . . . 10  |-  ( x  =  N  ->  (
x  gcd  N )  =  ( N  gcd  N ) )
1918neeq1d 2301 . . . . . . . . 9  |-  ( x  =  N  ->  (
( x  gcd  N
)  =/=  1  <->  ( N  gcd  N )  =/=  1 ) )
2017, 19syl5ibrcom 156 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( x  =  N  ->  ( x  gcd  N )  =/=  1 ) )
2120imp 123 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  =  N )  ->  (
x  gcd  N )  =/=  1 )
2221adantlr 466 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  =  N )  ->  ( x  gcd  N )  =/=  1
)
2322neneqd 2304 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  =  N )  ->  -.  (
x  gcd  N )  =  1 )
2423pm2.21d 591 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  =  N )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
25 fzm1 9820 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( x  e.  ( 1 ... N
)  <->  ( x  e.  ( 1 ... ( N  -  1 ) )  \/  x  =  N ) ) )
26 nnuz 9310 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2725, 26eleq2s 2210 . . . . . 6  |-  ( N  e.  NN  ->  (
x  e.  ( 1 ... N )  <->  ( x  e.  ( 1 ... ( N  -  1 ) )  \/  x  =  N ) ) )
2827biimpa 292 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  ->  ( x  e.  ( 1 ... ( N  -  1 ) )  \/  x  =  N ) )
296, 28sylan 279 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 1 ... N
) )  ->  (
x  e.  ( 1 ... ( N  - 
1 ) )  \/  x  =  N ) )
302, 24, 29mpjaodan 770 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 1 ... N
) )  ->  (
( x  gcd  N
)  =  1  ->  x  e.  ( 1 ... ( N  - 
1 ) ) ) )
3130ralrimiva 2480 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  A. x  e.  ( 1 ... N
) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
32 rabss 3142 . 2  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... ( N  -  1 ) )  <->  A. x  e.  ( 1 ... N
) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
3331, 32sylibr 133 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 680    = wceq 1314    e. wcel 1463    =/= wne 2283   A.wral 2391   {crab 2395    C_ wss 3039   class class class wbr 3897   ` cfv 5091  (class class class)co 5740   RRcr 7583   1c1 7585    < clt 7764    - cmin 7897   NNcn 8677   2c2 8728   ZZcz 9005   ZZ>=cuz 9275   ...cfz 9730   abscabs 10709    gcd cgcd 11531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-sup 6837  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-fz 9731  df-fzo 9860  df-fl 9983  df-mod 10036  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-dvds 11390  df-gcd 11532
This theorem is referenced by:  phibnd  11788  dfphi2  11791
  Copyright terms: Public domain W3C validator