ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  phibndlem Unicode version

Theorem phibndlem 12234
Description: Lemma for phibnd 12235. (Contributed by Mario Carneiro, 23-Feb-2014.)
Assertion
Ref Expression
phibndlem  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
Distinct variable group:    x, N

Proof of Theorem phibndlem
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  ->  x  e.  ( 1 ... ( N  -  1 ) ) )
21a1d 22 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  e.  ( 1 ... ( N  -  1 ) ) )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
3 eluzelz 9555 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  ZZ )
4 gcdid 12005 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  ( N  gcd  N )  =  ( abs `  N
) )
53, 4syl 14 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  gcd  N )  =  ( abs `  N ) )
6 eluz2nn 9584 . . . . . . . . . . . 12  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
7 nnre 8944 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  RR )
8 nnnn0 9201 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  NN0 )
98nn0ge0d 9250 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  0  <_  N )
107, 9absidd 11194 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  ( abs `  N )  =  N )
116, 10syl 14 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( abs `  N )  =  N )
125, 11eqtrd 2222 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  gcd  N )  =  N )
13 1re 7974 . . . . . . . . . . 11  |-  1  e.  RR
14 eluz2gt1 9620 . . . . . . . . . . 11  |-  ( N  e.  ( ZZ>= `  2
)  ->  1  <  N )
15 ltne 8060 . . . . . . . . . . 11  |-  ( ( 1  e.  RR  /\  1  <  N )  ->  N  =/=  1 )
1613, 14, 15sylancr 414 . . . . . . . . . 10  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  =/=  1 )
1712, 16eqnetrd 2384 . . . . . . . . 9  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( N  gcd  N )  =/=  1
)
18 oveq1 5898 . . . . . . . . . 10  |-  ( x  =  N  ->  (
x  gcd  N )  =  ( N  gcd  N ) )
1918neeq1d 2378 . . . . . . . . 9  |-  ( x  =  N  ->  (
( x  gcd  N
)  =/=  1  <->  ( N  gcd  N )  =/=  1 ) )
2017, 19syl5ibrcom 157 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  2
)  ->  ( x  =  N  ->  ( x  gcd  N )  =/=  1 ) )
2120imp 124 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  =  N )  ->  (
x  gcd  N )  =/=  1 )
2221adantlr 477 . . . . . 6  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  =  N )  ->  ( x  gcd  N )  =/=  1
)
2322neneqd 2381 . . . . 5  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  =  N )  ->  -.  (
x  gcd  N )  =  1 )
2423pm2.21d 620 . . . 4  |-  ( ( ( N  e.  (
ZZ>= `  2 )  /\  x  e.  ( 1 ... N ) )  /\  x  =  N )  ->  ( (
x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
25 fzm1 10118 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  1
)  ->  ( x  e.  ( 1 ... N
)  <->  ( x  e.  ( 1 ... ( N  -  1 ) )  \/  x  =  N ) ) )
26 nnuz 9581 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
2725, 26eleq2s 2284 . . . . . 6  |-  ( N  e.  NN  ->  (
x  e.  ( 1 ... N )  <->  ( x  e.  ( 1 ... ( N  -  1 ) )  \/  x  =  N ) ) )
2827biimpa 296 . . . . 5  |-  ( ( N  e.  NN  /\  x  e.  ( 1 ... N ) )  ->  ( x  e.  ( 1 ... ( N  -  1 ) )  \/  x  =  N ) )
296, 28sylan 283 . . . 4  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 1 ... N
) )  ->  (
x  e.  ( 1 ... ( N  - 
1 ) )  \/  x  =  N ) )
302, 24, 29mpjaodan 799 . . 3  |-  ( ( N  e.  ( ZZ>= ` 
2 )  /\  x  e.  ( 1 ... N
) )  ->  (
( x  gcd  N
)  =  1  ->  x  e.  ( 1 ... ( N  - 
1 ) ) ) )
3130ralrimiva 2563 . 2  |-  ( N  e.  ( ZZ>= `  2
)  ->  A. x  e.  ( 1 ... N
) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
32 rabss 3247 . 2  |-  ( { x  e.  ( 1 ... N )  |  ( x  gcd  N
)  =  1 } 
C_  ( 1 ... ( N  -  1 ) )  <->  A. x  e.  ( 1 ... N
) ( ( x  gcd  N )  =  1  ->  x  e.  ( 1 ... ( N  -  1 ) ) ) )
3331, 32sylibr 134 1  |-  ( N  e.  ( ZZ>= `  2
)  ->  { x  e.  ( 1 ... N
)  |  ( x  gcd  N )  =  1 }  C_  (
1 ... ( N  - 
1 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160    =/= wne 2360   A.wral 2468   {crab 2472    C_ wss 3144   class class class wbr 4018   ` cfv 5231  (class class class)co 5891   RRcr 7828   1c1 7830    < clt 8010    - cmin 8146   NNcn 8937   2c2 8988   ZZcz 9271   ZZ>=cuz 9546   ...cfz 10026   abscabs 11024    gcd cgcd 11961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948  ax-caucvg 7949
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-frec 6410  df-sup 7001  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-fz 10027  df-fzo 10161  df-fl 10288  df-mod 10341  df-seqfrec 10464  df-exp 10538  df-cj 10869  df-re 10870  df-im 10871  df-rsqrt 11025  df-abs 11026  df-dvds 11813  df-gcd 11962
This theorem is referenced by:  phibnd  12235  dfphi2  12238
  Copyright terms: Public domain W3C validator