ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutr1 Unicode version

Theorem bezoutr1 11721
Description: Converse of bezout 11699 for when the greater common divisor is one (sufficient condition for relative primality). (Contributed by Stefan O'Rear, 23-Sep-2014.)
Assertion
Ref Expression
bezoutr1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( ( A  x.  X )  +  ( B  x.  Y
) )  =  1  ->  ( A  gcd  B )  =  1 ) )

Proof of Theorem bezoutr1
StepHypRef Expression
1 bezoutr 11720 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( A  gcd  B
)  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
21adantr 274 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  ||  ( ( A  x.  X )  +  ( B  x.  Y ) ) )
3 simpr 109 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( ( A  x.  X )  +  ( B  x.  Y
) )  =  1 )
42, 3breqtrd 3954 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  ||  1 )
5 gcdcl 11655 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  NN0 )
65nn0zd 9171 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  e.  ZZ )
76ad2antrr 479 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  e.  ZZ )
8 1nn 8731 . . . . . 6  |-  1  e.  NN
98a1i 9 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  1  e.  NN )
10 dvdsle 11542 . . . . 5  |-  ( ( ( A  gcd  B
)  e.  ZZ  /\  1  e.  NN )  ->  ( ( A  gcd  B )  ||  1  -> 
( A  gcd  B
)  <_  1 ) )
117, 9, 10syl2anc 408 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( ( A  gcd  B )  ||  1  ->  ( A  gcd  B )  <_  1 ) )
124, 11mpd 13 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  <_  1 )
13 simpll 518 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  e.  ZZ  /\  B  e.  ZZ ) )
14 oveq1 5781 . . . . . . . . . . . . 13  |-  ( A  =  0  ->  ( A  x.  X )  =  ( 0  x.  X ) )
15 oveq1 5781 . . . . . . . . . . . . 13  |-  ( B  =  0  ->  ( B  x.  Y )  =  ( 0  x.  Y ) )
1614, 15oveqan12d 5793 . . . . . . . . . . . 12  |-  ( ( A  =  0  /\  B  =  0 )  ->  ( ( A  x.  X )  +  ( B  x.  Y
) )  =  ( ( 0  x.  X
)  +  ( 0  x.  Y ) ) )
17 zcn 9059 . . . . . . . . . . . . . 14  |-  ( X  e.  ZZ  ->  X  e.  CC )
1817mul02d 8154 . . . . . . . . . . . . 13  |-  ( X  e.  ZZ  ->  (
0  x.  X )  =  0 )
19 zcn 9059 . . . . . . . . . . . . . 14  |-  ( Y  e.  ZZ  ->  Y  e.  CC )
2019mul02d 8154 . . . . . . . . . . . . 13  |-  ( Y  e.  ZZ  ->  (
0  x.  Y )  =  0 )
2118, 20oveqan12d 5793 . . . . . . . . . . . 12  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( 0  x.  X )  +  ( 0  x.  Y ) )  =  ( 0  +  0 ) )
2216, 21sylan9eqr 2194 . . . . . . . . . . 11  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A  x.  X )  +  ( B  x.  Y ) )  =  ( 0  +  0 ) )
23 00id 7903 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
2422, 23syl6eq 2188 . . . . . . . . . 10  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  ( A  =  0  /\  B  =  0 ) )  -> 
( ( A  x.  X )  +  ( B  x.  Y ) )  =  0 )
2524adantll 467 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( A  =  0  /\  B  =  0
) )  ->  (
( A  x.  X
)  +  ( B  x.  Y ) )  =  0 )
26 0ne1 8787 . . . . . . . . . 10  |-  0  =/=  1
2726a1i 9 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( A  =  0  /\  B  =  0
) )  ->  0  =/=  1 )
2825, 27eqnetrd 2332 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( A  =  0  /\  B  =  0
) )  ->  (
( A  x.  X
)  +  ( B  x.  Y ) )  =/=  1 )
2928ex 114 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( A  =  0  /\  B  =  0 )  ->  (
( A  x.  X
)  +  ( B  x.  Y ) )  =/=  1 ) )
3029necon2bd 2366 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( ( A  x.  X )  +  ( B  x.  Y
) )  =  1  ->  -.  ( A  =  0  /\  B  =  0 ) ) )
3130imp 123 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  -.  ( A  =  0  /\  B  =  0 ) )
32 gcdn0cl 11651 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  -.  ( A  =  0  /\  B  =  0 ) )  ->  ( A  gcd  B )  e.  NN )
3313, 31, 32syl2anc 408 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  e.  NN )
34 nnle1eq1 8744 . . . 4  |-  ( ( A  gcd  B )  e.  NN  ->  (
( A  gcd  B
)  <_  1  <->  ( A  gcd  B )  =  1 ) )
3533, 34syl 14 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( ( A  gcd  B )  <_ 
1  <->  ( A  gcd  B )  =  1 ) )
3612, 35mpbid 146 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  /\  ( ( A  x.  X )  +  ( B  x.  Y ) )  =  1 )  ->  ( A  gcd  B )  =  1 )
3736ex 114 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( ( ( A  x.  X )  +  ( B  x.  Y
) )  =  1  ->  ( A  gcd  B )  =  1 ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    =/= wne 2308   class class class wbr 3929  (class class class)co 5774   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    <_ cle 7801   NNcn 8720   ZZcz 9054    || cdvds 11493    gcd cgcd 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636
This theorem is referenced by:  divgcdcoprm0  11782
  Copyright terms: Public domain W3C validator