ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddnemnf Unicode version

Theorem xaddnemnf 9949
Description: Closure of extended real addition in the subset  RR*  /  { -oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnemnf  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )
)  ->  ( A +e B )  =/= -oo )

Proof of Theorem xaddnemnf
StepHypRef Expression
1 xrnemnf 9869 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
2 xrnemnf 9869 . . . 4  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  <->  ( B  e.  RR  \/  B  = +oo ) )
3 rexadd 9944 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
4 readdcl 8022 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
53, 4eqeltrd 2273 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  e.  RR )
65renemnfd 8095 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =/= -oo )
7 oveq2 5933 . . . . . . 7  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
8 rexr 8089 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
9 renemnf 8092 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= -oo )
10 xaddpnf1 9938 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
118, 9, 10syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e +oo )  = +oo )
127, 11sylan9eqr 2251 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  = +oo )
13 pnfnemnf 8098 . . . . . . 7  |- +oo  =/= -oo
1413a1i 9 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  -> +oo  =/= -oo )
1512, 14eqnetrd 2391 . . . . 5  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  =/= -oo )
166, 15jaodan 798 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo ) )  ->  ( A +e B )  =/= -oo )
172, 16sylan2b 287 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> 
( A +e
B )  =/= -oo )
18 oveq1 5932 . . . . 5  |-  ( A  = +oo  ->  ( A +e B )  =  ( +oo +e B ) )
19 xaddpnf2 9939 . . . . 5  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
2018, 19sylan9eq 2249 . . . 4  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> 
( A +e
B )  = +oo )
2113a1i 9 . . . 4  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> +oo  =/= -oo )
2220, 21eqnetrd 2391 . . 3  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> 
( A +e
B )  =/= -oo )
2317, 22jaoian 796 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo )  /\  ( B  e. 
RR*  /\  B  =/= -oo ) )  ->  ( A +e B )  =/= -oo )
241, 23sylanb 284 1  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )
)  ->  ( A +e B )  =/= -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167    =/= wne 2367  (class class class)co 5925   RRcr 7895    + caddc 7899   +oocpnf 8075   -oocmnf 8076   RR*cxr 8077   +ecxad 9862
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993  ax-rnegex 8005
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-xadd 9865
This theorem is referenced by:  xaddass  9961  xlt2add  9972  xadd4d  9977  xleaddadd  9979
  Copyright terms: Public domain W3C validator