ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xaddnemnf Unicode version

Theorem xaddnemnf 9887
Description: Closure of extended real addition in the subset  RR*  /  { -oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xaddnemnf  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )
)  ->  ( A +e B )  =/= -oo )

Proof of Theorem xaddnemnf
StepHypRef Expression
1 xrnemnf 9807 . 2  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  <->  ( A  e.  RR  \/  A  = +oo ) )
2 xrnemnf 9807 . . . 4  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  <->  ( B  e.  RR  \/  B  = +oo ) )
3 rexadd 9882 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =  ( A  +  B ) )
4 readdcl 7967 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  +  B
)  e.  RR )
53, 4eqeltrd 2266 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  e.  RR )
65renemnfd 8039 . . . . 5  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e
B )  =/= -oo )
7 oveq2 5904 . . . . . . 7  |-  ( B  = +oo  ->  ( A +e B )  =  ( A +e +oo ) )
8 rexr 8033 . . . . . . . 8  |-  ( A  e.  RR  ->  A  e.  RR* )
9 renemnf 8036 . . . . . . . 8  |-  ( A  e.  RR  ->  A  =/= -oo )
10 xaddpnf1 9876 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
118, 9, 10syl2anc 411 . . . . . . 7  |-  ( A  e.  RR  ->  ( A +e +oo )  = +oo )
127, 11sylan9eqr 2244 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  = +oo )
13 pnfnemnf 8042 . . . . . . 7  |- +oo  =/= -oo
1413a1i 9 . . . . . 6  |-  ( ( A  e.  RR  /\  B  = +oo )  -> +oo  =/= -oo )
1512, 14eqnetrd 2384 . . . . 5  |-  ( ( A  e.  RR  /\  B  = +oo )  ->  ( A +e
B )  =/= -oo )
166, 15jaodan 798 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  \/  B  = +oo ) )  ->  ( A +e B )  =/= -oo )
172, 16sylan2b 287 . . 3  |-  ( ( A  e.  RR  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> 
( A +e
B )  =/= -oo )
18 oveq1 5903 . . . . 5  |-  ( A  = +oo  ->  ( A +e B )  =  ( +oo +e B ) )
19 xaddpnf2 9877 . . . . 5  |-  ( ( B  e.  RR*  /\  B  =/= -oo )  ->  ( +oo +e B )  = +oo )
2018, 19sylan9eq 2242 . . . 4  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> 
( A +e
B )  = +oo )
2113a1i 9 . . . 4  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> +oo  =/= -oo )
2220, 21eqnetrd 2384 . . 3  |-  ( ( A  = +oo  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  -> 
( A +e
B )  =/= -oo )
2317, 22jaoian 796 . 2  |-  ( ( ( A  e.  RR  \/  A  = +oo )  /\  ( B  e. 
RR*  /\  B  =/= -oo ) )  ->  ( A +e B )  =/= -oo )
241, 23sylanb 284 1  |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )
)  ->  ( A +e B )  =/= -oo )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2160    =/= wne 2360  (class class class)co 5896   RRcr 7840    + caddc 7844   +oocpnf 8019   -oocmnf 8020   RR*cxr 8021   +ecxad 9800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1re 7935  ax-addrcl 7938  ax-rnegex 7950
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-xadd 9803
This theorem is referenced by:  xaddass  9899  xlt2add  9910  xadd4d  9915  xleaddadd  9917
  Copyright terms: Public domain W3C validator