ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnq0lem1 Unicode version

Theorem nnnq0lem1 7408
Description: Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7411 and mulnnnq0 7412. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
nnnq0lem1  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
Distinct variable groups:    z, w, v, u, t, s, q, f, g, h, A   
z, B, w, v, u, t, s, q, f, g, h
Allowed substitution hints:    C( z, w, v, u, t, f, g, h, s, q)    D( z, w, v, u, t, f, g, h, s, q)

Proof of Theorem nnnq0lem1
StepHypRef Expression
1 enq0er 7397 . . . . . 6  |- ~Q0  Er  ( om  X.  N. )
2 erdm 6523 . . . . . 6  |-  ( ~Q0  Er  ( om  X.  N. )  ->  dom ~Q0  =  ( om  X.  N. ) )
31, 2ax-mp 5 . . . . 5  |-  dom ~Q0  =  ( om  X.  N. )
4 simpll 524 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  A  e.  ( ( om  X.  N. ) /. ~Q0  ) )
5 simplll 528 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  A  =  [ <. w ,  v
>. ] ~Q0  )
65eleq1d 2239 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. w ,  v >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
76adantl 275 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( A  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. w ,  v
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
84, 7mpbid 146 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. w ,  v
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
9 ecelqsdm 6583 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. w ,  v >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. w ,  v >.  e.  ( om  X.  N. )
)
103, 8, 9sylancr 412 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. w ,  v >.  e.  ( om  X.  N. ) )
11 opelxp 4641 . . . 4  |-  ( <.
w ,  v >.  e.  ( om  X.  N. ) 
<->  ( w  e.  om  /\  v  e.  N. )
)
1210, 11sylib 121 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( w  e.  om  /\  v  e.  N. )
)
13 simprll 532 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  A  =  [ <. s ,  f
>. ] ~Q0  )
1413eleq1d 2239 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. s ,  f >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
1514adantl 275 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( A  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. s ,  f
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
164, 15mpbid 146 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. s ,  f
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
17 ecelqsdm 6583 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. s ,  f >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. s ,  f >.  e.  ( om  X.  N. )
)
183, 16, 17sylancr 412 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. s ,  f >.  e.  ( om  X.  N. ) )
19 opelxp 4641 . . . 4  |-  ( <.
s ,  f >.  e.  ( om  X.  N. ) 
<->  ( s  e.  om  /\  f  e.  N. )
)
2018, 19sylib 121 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( s  e.  om  /\  f  e.  N. )
)
2112, 20jca 304 . 2  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( w  e. 
om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
) )
22 simplr 525 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )
23 simpllr 529 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  B  =  [ <. u ,  t
>. ] ~Q0  )
2423eleq1d 2239 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( B  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. u ,  t >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
2524adantl 275 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( B  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. u ,  t
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
2622, 25mpbid 146 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. u ,  t
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
27 ecelqsdm 6583 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. u ,  t >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. u ,  t >.  e.  ( om  X.  N. )
)
283, 26, 27sylancr 412 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. u ,  t >.  e.  ( om  X.  N. ) )
29 opelxp 4641 . . . 4  |-  ( <.
u ,  t >.  e.  ( om  X.  N. ) 
<->  ( u  e.  om  /\  t  e.  N. )
)
3028, 29sylib 121 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( u  e.  om  /\  t  e.  N. )
)
31 simprlr 533 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  B  =  [ <. g ,  h >. ] ~Q0  )
3231eleq1d 2239 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( B  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. g ,  h >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
3332adantl 275 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( B  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. g ,  h >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
3422, 33mpbid 146 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. g ,  h >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
35 ecelqsdm 6583 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. g ,  h >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. g ,  h >.  e.  ( om  X.  N. ) )
363, 34, 35sylancr 412 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. g ,  h >.  e.  ( om  X.  N. ) )
37 opelxp 4641 . . . 4  |-  ( <.
g ,  h >.  e.  ( om  X.  N. ) 
<->  ( g  e.  om  /\  h  e.  N. )
)
3836, 37sylib 121 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( g  e.  om  /\  h  e.  N. )
)
3930, 38jca 304 . 2  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( u  e. 
om  /\  t  e.  N. )  /\  (
g  e.  om  /\  h  e.  N. )
) )
405, 13eqtr3d 2205 . . . . . 6  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  [ <. w ,  v >. ] ~Q0  =  [ <. s ,  f >. ] ~Q0  )
4140adantl 275 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. w ,  v
>. ] ~Q0  =  [ <. s ,  f
>. ] ~Q0  )
421a1i 9 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> ~Q0  Er  ( om  X.  N. ) )
4342, 10erth 6557 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. w ,  v
>. ~Q0  <. s ,  f >.  <->  [ <. w ,  v >. ] ~Q0  =  [ <. s ,  f >. ] ~Q0  ) )
4441, 43mpbird 166 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. w ,  v >. ~Q0  <. s ,  f >. )
45 enq0breq 7398 . . . . 5  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
)  ->  ( <. w ,  v >. ~Q0 
<. s ,  f >.  <->  ( w  .o  f )  =  ( v  .o  s ) ) )
4612, 20, 45syl2anc 409 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. w ,  v
>. ~Q0  <. s ,  f >.  <->  ( w  .o  f )  =  ( v  .o  s ) ) )
4744, 46mpbid 146 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( w  .o  f
)  =  ( v  .o  s ) )
4823, 31eqtr3d 2205 . . . . . 6  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  [ <. u ,  t >. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
4948adantl 275 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. u ,  t
>. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
5042, 28erth 6557 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. u ,  t
>. ~Q0  <. g ,  h >.  <->  [ <. u ,  t >. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  ) )
5149, 50mpbird 166 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. u ,  t >. ~Q0  <. g ,  h >. )
52 enq0breq 7398 . . . . 5  |-  ( ( ( u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
)  ->  ( <. u ,  t >. ~Q0 
<. g ,  h >.  <->  (
u  .o  h )  =  ( t  .o  g ) ) )
5330, 38, 52syl2anc 409 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. u ,  t
>. ~Q0  <. g ,  h >.  <->  ( u  .o  h )  =  ( t  .o  g ) ) )
5451, 53mpbid 146 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( u  .o  h
)  =  ( t  .o  g ) )
5547, 54jca 304 . 2  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( w  .o  f )  =  ( v  .o  s )  /\  ( u  .o  h )  =  ( t  .o  g ) ) )
5621, 39, 55jca31 307 1  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   <.cop 3586   class class class wbr 3989   omcom 4574    X. cxp 4609   dom cdm 4611  (class class class)co 5853    .o comu 6393    Er wer 6510   [cec 6511   /.cqs 6512   N.cnpi 7234   ~Q0 ceq0 7248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-enq0 7386
This theorem is referenced by:  addnq0mo  7409  mulnq0mo  7410
  Copyright terms: Public domain W3C validator