ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnnq0lem1 Unicode version

Theorem nnnq0lem1 7278
Description: Decomposing nonnegative fractions into natural numbers. Lemma for addnnnq0 7281 and mulnnnq0 7282. (Contributed by Jim Kingdon, 23-Nov-2019.)
Assertion
Ref Expression
nnnq0lem1  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
Distinct variable groups:    z, w, v, u, t, s, q, f, g, h, A   
z, B, w, v, u, t, s, q, f, g, h
Allowed substitution hints:    C( z, w, v, u, t, f, g, h, s, q)    D( z, w, v, u, t, f, g, h, s, q)

Proof of Theorem nnnq0lem1
StepHypRef Expression
1 enq0er 7267 . . . . . 6  |- ~Q0  Er  ( om  X.  N. )
2 erdm 6447 . . . . . 6  |-  ( ~Q0  Er  ( om  X.  N. )  ->  dom ~Q0  =  ( om  X.  N. ) )
31, 2ax-mp 5 . . . . 5  |-  dom ~Q0  =  ( om  X.  N. )
4 simpll 519 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  A  e.  ( ( om  X.  N. ) /. ~Q0  ) )
5 simplll 523 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  A  =  [ <. w ,  v
>. ] ~Q0  )
65eleq1d 2209 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. w ,  v >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
76adantl 275 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( A  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. w ,  v
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
84, 7mpbid 146 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. w ,  v
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
9 ecelqsdm 6507 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. w ,  v >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. w ,  v >.  e.  ( om  X.  N. )
)
103, 8, 9sylancr 411 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. w ,  v >.  e.  ( om  X.  N. ) )
11 opelxp 4577 . . . 4  |-  ( <.
w ,  v >.  e.  ( om  X.  N. ) 
<->  ( w  e.  om  /\  v  e.  N. )
)
1210, 11sylib 121 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( w  e.  om  /\  v  e.  N. )
)
13 simprll 527 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  A  =  [ <. s ,  f
>. ] ~Q0  )
1413eleq1d 2209 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. s ,  f >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
1514adantl 275 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( A  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. s ,  f
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
164, 15mpbid 146 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. s ,  f
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
17 ecelqsdm 6507 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. s ,  f >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. s ,  f >.  e.  ( om  X.  N. )
)
183, 16, 17sylancr 411 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. s ,  f >.  e.  ( om  X.  N. ) )
19 opelxp 4577 . . . 4  |-  ( <.
s ,  f >.  e.  ( om  X.  N. ) 
<->  ( s  e.  om  /\  f  e.  N. )
)
2018, 19sylib 121 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( s  e.  om  /\  f  e.  N. )
)
2112, 20jca 304 . 2  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( w  e. 
om  /\  v  e.  N. )  /\  (
s  e.  om  /\  f  e.  N. )
) )
22 simplr 520 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )
23 simpllr 524 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  B  =  [ <. u ,  t
>. ] ~Q0  )
2423eleq1d 2209 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( B  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. u ,  t >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
2524adantl 275 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( B  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. u ,  t
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
2622, 25mpbid 146 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. u ,  t
>. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
27 ecelqsdm 6507 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. u ,  t >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. u ,  t >.  e.  ( om  X.  N. )
)
283, 26, 27sylancr 411 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. u ,  t >.  e.  ( om  X.  N. ) )
29 opelxp 4577 . . . 4  |-  ( <.
u ,  t >.  e.  ( om  X.  N. ) 
<->  ( u  e.  om  /\  t  e.  N. )
)
3028, 29sylib 121 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( u  e.  om  /\  t  e.  N. )
)
31 simprlr 528 . . . . . . . 8  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  B  =  [ <. g ,  h >. ] ~Q0  )
3231eleq1d 2209 . . . . . . 7  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  ( B  e.  ( ( om  X.  N. ) /. ~Q0  )  <->  [ <. g ,  h >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) ) )
3332adantl 275 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( B  e.  ( ( om  X.  N. ) /. ~Q0  ) 
<->  [ <. g ,  h >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) ) )
3422, 33mpbid 146 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. g ,  h >. ] ~Q0  e.  ( ( om  X.  N. ) /. ~Q0  ) )
35 ecelqsdm 6507 . . . . 5  |-  ( ( dom ~Q0  =  ( om  X.  N. )  /\  [ <. g ,  h >. ] ~Q0  e.  ( ( om 
X.  N. ) /. ~Q0  ) )  ->  <. g ,  h >.  e.  ( om  X.  N. ) )
363, 34, 35sylancr 411 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. g ,  h >.  e.  ( om  X.  N. ) )
37 opelxp 4577 . . . 4  |-  ( <.
g ,  h >.  e.  ( om  X.  N. ) 
<->  ( g  e.  om  /\  h  e.  N. )
)
3836, 37sylib 121 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( g  e.  om  /\  h  e.  N. )
)
3930, 38jca 304 . 2  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( u  e. 
om  /\  t  e.  N. )  /\  (
g  e.  om  /\  h  e.  N. )
) )
405, 13eqtr3d 2175 . . . . . 6  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  [ <. w ,  v >. ] ~Q0  =  [ <. s ,  f >. ] ~Q0  )
4140adantl 275 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. w ,  v
>. ] ~Q0  =  [ <. s ,  f
>. ] ~Q0  )
421a1i 9 . . . . . 6  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> ~Q0  Er  ( om  X.  N. ) )
4342, 10erth 6481 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. w ,  v
>. ~Q0  <. s ,  f >.  <->  [ <. w ,  v >. ] ~Q0  =  [ <. s ,  f >. ] ~Q0  ) )
4441, 43mpbird 166 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. w ,  v >. ~Q0  <. s ,  f >. )
45 enq0breq 7268 . . . . 5  |-  ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
)  ->  ( <. w ,  v >. ~Q0 
<. s ,  f >.  <->  ( w  .o  f )  =  ( v  .o  s ) ) )
4612, 20, 45syl2anc 409 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. w ,  v
>. ~Q0  <. s ,  f >.  <->  ( w  .o  f )  =  ( v  .o  s ) ) )
4744, 46mpbid 146 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( w  .o  f
)  =  ( v  .o  s ) )
4823, 31eqtr3d 2175 . . . . . 6  |-  ( ( ( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) )  ->  [ <. u ,  t >. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
4948adantl 275 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  [ <. u ,  t
>. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  )
5042, 28erth 6481 . . . . 5  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. u ,  t
>. ~Q0  <. g ,  h >.  <->  [ <. u ,  t >. ] ~Q0  =  [ <. g ,  h >. ] ~Q0  ) )
5149, 50mpbird 166 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  ->  <. u ,  t >. ~Q0  <. g ,  h >. )
52 enq0breq 7268 . . . . 5  |-  ( ( ( u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
)  ->  ( <. u ,  t >. ~Q0 
<. g ,  h >.  <->  (
u  .o  h )  =  ( t  .o  g ) ) )
5330, 38, 52syl2anc 409 . . . 4  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( <. u ,  t
>. ~Q0  <. g ,  h >.  <->  ( u  .o  h )  =  ( t  .o  g ) ) )
5451, 53mpbid 146 . . 3  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( u  .o  h
)  =  ( t  .o  g ) )
5547, 54jca 304 . 2  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( w  .o  f )  =  ( v  .o  s )  /\  ( u  .o  h )  =  ( t  .o  g ) ) )
5621, 39, 55jca31 307 1  |-  ( ( ( A  e.  ( ( om  X.  N. ) /. ~Q0  )  /\  B  e.  ( ( om  X.  N. ) /. ~Q0  ) )  /\  (
( ( A  =  [ <. w ,  v
>. ] ~Q0  /\  B  =  [ <. u ,  t >. ] ~Q0  )  /\  z  =  [ C ] ~Q0  )  /\  ( ( A  =  [ <. s ,  f >. ] ~Q0  /\  B  =  [ <. g ,  h >. ] ~Q0  )  /\  q  =  [ D ] ~Q0  ) ) )  -> 
( ( ( ( w  e.  om  /\  v  e.  N. )  /\  ( s  e.  om  /\  f  e.  N. )
)  /\  ( (
u  e.  om  /\  t  e.  N. )  /\  ( g  e.  om  /\  h  e.  N. )
) )  /\  (
( w  .o  f
)  =  ( v  .o  s )  /\  ( u  .o  h
)  =  ( t  .o  g ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   <.cop 3535   class class class wbr 3937   omcom 4512    X. cxp 4545   dom cdm 4547  (class class class)co 5782    .o comu 6319    Er wer 6434   [cec 6435   /.cqs 6436   N.cnpi 7104   ~Q0 ceq0 7118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-enq0 7256
This theorem is referenced by:  addnq0mo  7279  mulnq0mo  7280
  Copyright terms: Public domain W3C validator