ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs2 Unicode version

Theorem uniqs2 6573
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1  |-  ( ph  ->  R  Er  A )
qsss.2  |-  ( ph  ->  R  e.  V )
Assertion
Ref Expression
uniqs2  |-  ( ph  ->  U. ( A /. R )  =  A )

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5  |-  ( ph  ->  R  e.  V )
2 uniqs 6571 . . . . 5  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )
31, 2syl 14 . . . 4  |-  ( ph  ->  U. ( A /. R )  =  ( R " A ) )
4 qsss.1 . . . . . 6  |-  ( ph  ->  R  Er  A )
5 erdm 6523 . . . . . 6  |-  ( R  Er  A  ->  dom  R  =  A )
64, 5syl 14 . . . . 5  |-  ( ph  ->  dom  R  =  A )
76imaeq2d 4953 . . . 4  |-  ( ph  ->  ( R " dom  R )  =  ( R
" A ) )
83, 7eqtr4d 2206 . . 3  |-  ( ph  ->  U. ( A /. R )  =  ( R " dom  R
) )
9 imadmrn 4963 . . 3  |-  ( R
" dom  R )  =  ran  R
108, 9eqtrdi 2219 . 2  |-  ( ph  ->  U. ( A /. R )  =  ran  R )
11 errn 6535 . . 3  |-  ( R  Er  A  ->  ran  R  =  A )
124, 11syl 14 . 2  |-  ( ph  ->  ran  R  =  A )
1310, 12eqtrd 2203 1  |-  ( ph  ->  U. ( A /. R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   U.cuni 3796   dom cdm 4611   ran crn 4612   "cima 4614    Er wer 6510   /.cqs 6512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-er 6513  df-ec 6515  df-qs 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator