ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs2 Unicode version

Theorem uniqs2 6705
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1  |-  ( ph  ->  R  Er  A )
qsss.2  |-  ( ph  ->  R  e.  V )
Assertion
Ref Expression
uniqs2  |-  ( ph  ->  U. ( A /. R )  =  A )

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5  |-  ( ph  ->  R  e.  V )
2 uniqs 6703 . . . . 5  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )
31, 2syl 14 . . . 4  |-  ( ph  ->  U. ( A /. R )  =  ( R " A ) )
4 qsss.1 . . . . . 6  |-  ( ph  ->  R  Er  A )
5 erdm 6653 . . . . . 6  |-  ( R  Er  A  ->  dom  R  =  A )
64, 5syl 14 . . . . 5  |-  ( ph  ->  dom  R  =  A )
76imaeq2d 5041 . . . 4  |-  ( ph  ->  ( R " dom  R )  =  ( R
" A ) )
83, 7eqtr4d 2243 . . 3  |-  ( ph  ->  U. ( A /. R )  =  ( R " dom  R
) )
9 imadmrn 5051 . . 3  |-  ( R
" dom  R )  =  ran  R
108, 9eqtrdi 2256 . 2  |-  ( ph  ->  U. ( A /. R )  =  ran  R )
11 errn 6665 . . 3  |-  ( R  Er  A  ->  ran  R  =  A )
124, 11syl 14 . 2  |-  ( ph  ->  ran  R  =  A )
1310, 12eqtrd 2240 1  |-  ( ph  ->  U. ( A /. R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   U.cuni 3864   dom cdm 4693   ran crn 4694   "cima 4696    Er wer 6640   /.cqs 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-xp 4699  df-rel 4700  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-er 6643  df-ec 6645  df-qs 6649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator