ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uniqs2 Unicode version

Theorem uniqs2 6649
Description: The union of a quotient set. (Contributed by Mario Carneiro, 11-Jul-2014.)
Hypotheses
Ref Expression
qsss.1  |-  ( ph  ->  R  Er  A )
qsss.2  |-  ( ph  ->  R  e.  V )
Assertion
Ref Expression
uniqs2  |-  ( ph  ->  U. ( A /. R )  =  A )

Proof of Theorem uniqs2
StepHypRef Expression
1 qsss.2 . . . . 5  |-  ( ph  ->  R  e.  V )
2 uniqs 6647 . . . . 5  |-  ( R  e.  V  ->  U. ( A /. R )  =  ( R " A
) )
31, 2syl 14 . . . 4  |-  ( ph  ->  U. ( A /. R )  =  ( R " A ) )
4 qsss.1 . . . . . 6  |-  ( ph  ->  R  Er  A )
5 erdm 6597 . . . . . 6  |-  ( R  Er  A  ->  dom  R  =  A )
64, 5syl 14 . . . . 5  |-  ( ph  ->  dom  R  =  A )
76imaeq2d 5005 . . . 4  |-  ( ph  ->  ( R " dom  R )  =  ( R
" A ) )
83, 7eqtr4d 2229 . . 3  |-  ( ph  ->  U. ( A /. R )  =  ( R " dom  R
) )
9 imadmrn 5015 . . 3  |-  ( R
" dom  R )  =  ran  R
108, 9eqtrdi 2242 . 2  |-  ( ph  ->  U. ( A /. R )  =  ran  R )
11 errn 6609 . . 3  |-  ( R  Er  A  ->  ran  R  =  A )
124, 11syl 14 . 2  |-  ( ph  ->  ran  R  =  A )
1310, 12eqtrd 2226 1  |-  ( ph  ->  U. ( A /. R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   U.cuni 3835   dom cdm 4659   ran crn 4660   "cima 4662    Er wer 6584   /.cqs 6586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-iun 3914  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-er 6587  df-ec 6589  df-qs 6593
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator