ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereldm Unicode version

Theorem ereldm 6632
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ereldm.1  |-  ( ph  ->  R  Er  X )
ereldm.2  |-  ( ph  ->  [ A ] R  =  [ B ] R
)
Assertion
Ref Expression
ereldm  |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )

Proof of Theorem ereldm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ereldm.2 . . . . 5  |-  ( ph  ->  [ A ] R  =  [ B ] R
)
21eleq2d 2263 . . . 4  |-  ( ph  ->  ( x  e.  [ A ] R  <->  x  e.  [ B ] R ) )
32exbidv 1836 . . 3  |-  ( ph  ->  ( E. x  x  e.  [ A ] R 
<->  E. x  x  e. 
[ B ] R
) )
4 ecdmn0m 6631 . . 3  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
5 ecdmn0m 6631 . . 3  |-  ( B  e.  dom  R  <->  E. x  x  e.  [ B ] R )
63, 4, 53bitr4g 223 . 2  |-  ( ph  ->  ( A  e.  dom  R  <-> 
B  e.  dom  R
) )
7 ereldm.1 . . . 4  |-  ( ph  ->  R  Er  X )
8 erdm 6597 . . . 4  |-  ( R  Er  X  ->  dom  R  =  X )
97, 8syl 14 . . 3  |-  ( ph  ->  dom  R  =  X )
109eleq2d 2263 . 2  |-  ( ph  ->  ( A  e.  dom  R  <-> 
A  e.  X ) )
119eleq2d 2263 . 2  |-  ( ph  ->  ( B  e.  dom  R  <-> 
B  e.  X ) )
126, 10, 113bitr3d 218 1  |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wex 1503    e. wcel 2164   dom cdm 4659    Er wer 6584   [cec 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-cnv 4667  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-er 6587  df-ec 6589
This theorem is referenced by:  erth  6633  brecop  6679
  Copyright terms: Public domain W3C validator