ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ereldm Unicode version

Theorem ereldm 6544
Description: Equality of equivalence classes implies equivalence of domain membership. (Contributed by NM, 28-Jan-1996.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
ereldm.1  |-  ( ph  ->  R  Er  X )
ereldm.2  |-  ( ph  ->  [ A ] R  =  [ B ] R
)
Assertion
Ref Expression
ereldm  |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )

Proof of Theorem ereldm
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ereldm.2 . . . . 5  |-  ( ph  ->  [ A ] R  =  [ B ] R
)
21eleq2d 2236 . . . 4  |-  ( ph  ->  ( x  e.  [ A ] R  <->  x  e.  [ B ] R ) )
32exbidv 1813 . . 3  |-  ( ph  ->  ( E. x  x  e.  [ A ] R 
<->  E. x  x  e. 
[ B ] R
) )
4 ecdmn0m 6543 . . 3  |-  ( A  e.  dom  R  <->  E. x  x  e.  [ A ] R )
5 ecdmn0m 6543 . . 3  |-  ( B  e.  dom  R  <->  E. x  x  e.  [ B ] R )
63, 4, 53bitr4g 222 . 2  |-  ( ph  ->  ( A  e.  dom  R  <-> 
B  e.  dom  R
) )
7 ereldm.1 . . . 4  |-  ( ph  ->  R  Er  X )
8 erdm 6511 . . . 4  |-  ( R  Er  X  ->  dom  R  =  X )
97, 8syl 14 . . 3  |-  ( ph  ->  dom  R  =  X )
109eleq2d 2236 . 2  |-  ( ph  ->  ( A  e.  dom  R  <-> 
A  e.  X ) )
119eleq2d 2236 . 2  |-  ( ph  ->  ( B  e.  dom  R  <-> 
B  e.  X ) )
126, 10, 113bitr3d 217 1  |-  ( ph  ->  ( A  e.  X  <->  B  e.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   E.wex 1480    e. wcel 2136   dom cdm 4604    Er wer 6498   [cec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-er 6501  df-ec 6503
This theorem is referenced by:  erth  6545  brecop  6591
  Copyright terms: Public domain W3C validator