ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erexb Unicode version

Theorem erexb 6705
Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erexb  |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )

Proof of Theorem erexb
StepHypRef Expression
1 dmexg 4988 . . 3  |-  ( R  e.  _V  ->  dom  R  e.  _V )
2 erdm 6690 . . . 4  |-  ( R  Er  A  ->  dom  R  =  A )
32eleq1d 2298 . . 3  |-  ( R  Er  A  ->  ( dom  R  e.  _V  <->  A  e.  _V ) )
41, 3imbitrid 154 . 2  |-  ( R  Er  A  ->  ( R  e.  _V  ->  A  e.  _V ) )
5 erex 6704 . 2  |-  ( R  Er  A  ->  ( A  e.  _V  ->  R  e.  _V ) )
64, 5impbid 129 1  |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   _Vcvv 2799   dom cdm 4719    Er wer 6677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730  df-er 6680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator