ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erexb Unicode version

Theorem erexb 6526
Description: An equivalence relation is a set if and only if its domain is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
erexb  |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )

Proof of Theorem erexb
StepHypRef Expression
1 dmexg 4868 . . 3  |-  ( R  e.  _V  ->  dom  R  e.  _V )
2 erdm 6511 . . . 4  |-  ( R  Er  A  ->  dom  R  =  A )
32eleq1d 2235 . . 3  |-  ( R  Er  A  ->  ( dom  R  e.  _V  <->  A  e.  _V ) )
41, 3syl5ib 153 . 2  |-  ( R  Er  A  ->  ( R  e.  _V  ->  A  e.  _V ) )
5 erex 6525 . 2  |-  ( R  Er  A  ->  ( A  e.  _V  ->  R  e.  _V ) )
64, 5impbid 128 1  |-  ( R  Er  A  ->  ( R  e.  _V  <->  A  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   _Vcvv 2726   dom cdm 4604    Er wer 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615  df-er 6501
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator