ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errn Unicode version

Theorem errn 6655
Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errn  |-  ( R  Er  A  ->  ran  R  =  A )

Proof of Theorem errn
StepHypRef Expression
1 df-rn 4694 . 2  |-  ran  R  =  dom  `' R
2 ercnv 6654 . . . 4  |-  ( R  Er  A  ->  `' R  =  R )
32dmeqd 4889 . . 3  |-  ( R  Er  A  ->  dom  `' R  =  dom  R
)
4 erdm 6643 . . 3  |-  ( R  Er  A  ->  dom  R  =  A )
53, 4eqtrd 2239 . 2  |-  ( R  Er  A  ->  dom  `' R  =  A )
61, 5eqtrid 2251 1  |-  ( R  Er  A  ->  ran  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   `'ccnv 4682   dom cdm 4683   ran crn 4684    Er wer 6630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4052  df-opab 4114  df-xp 4689  df-rel 4690  df-cnv 4691  df-dm 4693  df-rn 4694  df-er 6633
This theorem is referenced by:  erssxp  6656  ecss  6676  uniqs2  6695
  Copyright terms: Public domain W3C validator