ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errn Unicode version

Theorem errn 6700
Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errn  |-  ( R  Er  A  ->  ran  R  =  A )

Proof of Theorem errn
StepHypRef Expression
1 df-rn 4729 . 2  |-  ran  R  =  dom  `' R
2 ercnv 6699 . . . 4  |-  ( R  Er  A  ->  `' R  =  R )
32dmeqd 4924 . . 3  |-  ( R  Er  A  ->  dom  `' R  =  dom  R
)
4 erdm 6688 . . 3  |-  ( R  Er  A  ->  dom  R  =  A )
53, 4eqtrd 2262 . 2  |-  ( R  Er  A  ->  dom  `' R  =  A )
61, 5eqtrid 2274 1  |-  ( R  Er  A  ->  ran  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   `'ccnv 4717   dom cdm 4718   ran crn 4719    Er wer 6675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-er 6678
This theorem is referenced by:  erssxp  6701  ecss  6721  uniqs2  6740
  Copyright terms: Public domain W3C validator