ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  errn Unicode version

Theorem errn 6609
Description: The range and domain of an equivalence relation are equal. (Contributed by Rodolfo Medina, 11-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
errn  |-  ( R  Er  A  ->  ran  R  =  A )

Proof of Theorem errn
StepHypRef Expression
1 df-rn 4670 . 2  |-  ran  R  =  dom  `' R
2 ercnv 6608 . . . 4  |-  ( R  Er  A  ->  `' R  =  R )
32dmeqd 4864 . . 3  |-  ( R  Er  A  ->  dom  `' R  =  dom  R
)
4 erdm 6597 . . 3  |-  ( R  Er  A  ->  dom  R  =  A )
53, 4eqtrd 2226 . 2  |-  ( R  Er  A  ->  dom  `' R  =  A )
61, 5eqtrid 2238 1  |-  ( R  Er  A  ->  ran  R  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   `'ccnv 4658   dom cdm 4659   ran crn 4660    Er wer 6584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-er 6587
This theorem is referenced by:  erssxp  6610  ecss  6630  uniqs2  6649
  Copyright terms: Public domain W3C validator