ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0srpr Unicode version

Theorem gt0srpr 7776
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
gt0srpr  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  <->  B  <P  A )

Proof of Theorem gt0srpr
StepHypRef Expression
1 enrer 7763 . . . . 5  |-  ~R  Er  ( P.  X.  P. )
2 erdm 6568 . . . . 5  |-  (  ~R  Er  ( P.  X.  P. )  ->  dom  ~R  =  ( P.  X.  P. )
)
31, 2ax-mp 5 . . . 4  |-  dom  ~R  =  ( P.  X.  P. )
4 ltrelsr 7766 . . . . . . 7  |-  <R  C_  ( R.  X.  R. )
54brel 4696 . . . . . 6  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  ( 0R  e.  R.  /\  [ <. A ,  B >. ]  ~R  e.  R. )
)
65simprd 114 . . . . 5  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  [ <. A ,  B >. ]  ~R  e.  R. )
7 df-nr 7755 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
86, 7eleqtrdi 2282 . . . 4  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
9 ecelqsdm 6630 . . . 4  |-  ( ( dom  ~R  =  ( P.  X.  P. )  /\  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  <. A ,  B >.  e.  ( P.  X.  P. ) )
103, 8, 9sylancr 414 . . 3  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  <. A ,  B >.  e.  ( P. 
X.  P. ) )
11 opelxp 4674 . . 3  |-  ( <. A ,  B >.  e.  ( P.  X.  P. ) 
<->  ( A  e.  P.  /\  B  e.  P. )
)
1210, 11sylib 122 . 2  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  ( A  e.  P.  /\  B  e.  P. ) )
13 ltrelpr 7533 . . . 4  |-  <P  C_  ( P.  X.  P. )
1413brel 4696 . . 3  |-  ( B 
<P  A  ->  ( B  e.  P.  /\  A  e.  P. ) )
1514ancomd 267 . 2  |-  ( B 
<P  A  ->  ( A  e.  P.  /\  B  e.  P. ) )
16 df-0r 7759 . . . . 5  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
1716breq1i 4025 . . . 4  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  <->  [ <. 1P ,  1P >. ]  ~R  <R  [
<. A ,  B >. ]  ~R  )
18 1pr 7582 . . . . 5  |-  1P  e.  P.
19 ltsrprg 7775 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  1P  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. )
)  ->  ( [ <. 1P ,  1P >. ]  ~R  <R  [ <. A ,  B >. ]  ~R  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2018, 18, 19mpanl12 436 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. 1P ,  1P >. ]  ~R  <R  [
<. A ,  B >. ]  ~R  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2117, 20bitrid 192 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 0R  <R  [ <. A ,  B >. ]  ~R  <->  ( 1P  +P.  B ) 
<P  ( 1P  +P.  A
) ) )
22 ltaprg 7647 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  1P  e.  P. )  ->  ( B  <P  A  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2318, 22mp3an3 1337 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  <P  A  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2423ancoms 268 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  <P  A  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2521, 24bitr4d 191 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 0R  <R  [ <. A ,  B >. ]  ~R  <->  B 
<P  A ) )
2612, 15, 25pm5.21nii 705 1  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  <->  B  <P  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   <.cop 3610   class class class wbr 4018    X. cxp 4642   dom cdm 4644  (class class class)co 5895    Er wer 6555   [cec 6556   /.cqs 6557   P.cnp 7319   1Pc1p 7320    +P. cpp 7321    <P cltp 7323    ~R cer 7324   R.cnr 7325   0Rc0r 7326    <R cltr 7331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-1o 6440  df-2o 6441  df-oadd 6444  df-omul 6445  df-er 6558  df-ec 6560  df-qs 6564  df-ni 7332  df-pli 7333  df-mi 7334  df-lti 7335  df-plpq 7372  df-mpq 7373  df-enq 7375  df-nqqs 7376  df-plqqs 7377  df-mqqs 7378  df-1nqqs 7379  df-rq 7380  df-ltnqqs 7381  df-enq0 7452  df-nq0 7453  df-0nq0 7454  df-plq0 7455  df-mq0 7456  df-inp 7494  df-i1p 7495  df-iplp 7496  df-iltp 7498  df-enr 7754  df-nr 7755  df-ltr 7758  df-0r 7759
This theorem is referenced by:  recexgt0sr  7801  mulgt0sr  7806  srpospr  7811  prsrpos  7813
  Copyright terms: Public domain W3C validator