ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0srpr Unicode version

Theorem gt0srpr 7896
Description: Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
Assertion
Ref Expression
gt0srpr  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  <->  B  <P  A )

Proof of Theorem gt0srpr
StepHypRef Expression
1 enrer 7883 . . . . 5  |-  ~R  Er  ( P.  X.  P. )
2 erdm 6653 . . . . 5  |-  (  ~R  Er  ( P.  X.  P. )  ->  dom  ~R  =  ( P.  X.  P. )
)
31, 2ax-mp 5 . . . 4  |-  dom  ~R  =  ( P.  X.  P. )
4 ltrelsr 7886 . . . . . . 7  |-  <R  C_  ( R.  X.  R. )
54brel 4745 . . . . . 6  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  ( 0R  e.  R.  /\  [ <. A ,  B >. ]  ~R  e.  R. )
)
65simprd 114 . . . . 5  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  [ <. A ,  B >. ]  ~R  e.  R. )
7 df-nr 7875 . . . . 5  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
86, 7eleqtrdi 2300 . . . 4  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
9 ecelqsdm 6715 . . . 4  |-  ( ( dom  ~R  =  ( P.  X.  P. )  /\  [ <. A ,  B >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  <. A ,  B >.  e.  ( P.  X.  P. ) )
103, 8, 9sylancr 414 . . 3  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  <. A ,  B >.  e.  ( P. 
X.  P. ) )
11 opelxp 4723 . . 3  |-  ( <. A ,  B >.  e.  ( P.  X.  P. ) 
<->  ( A  e.  P.  /\  B  e.  P. )
)
1210, 11sylib 122 . 2  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  ->  ( A  e.  P.  /\  B  e.  P. ) )
13 ltrelpr 7653 . . . 4  |-  <P  C_  ( P.  X.  P. )
1413brel 4745 . . 3  |-  ( B 
<P  A  ->  ( B  e.  P.  /\  A  e.  P. ) )
1514ancomd 267 . 2  |-  ( B 
<P  A  ->  ( A  e.  P.  /\  B  e.  P. ) )
16 df-0r 7879 . . . . 5  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
1716breq1i 4066 . . . 4  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  <->  [ <. 1P ,  1P >. ]  ~R  <R  [
<. A ,  B >. ]  ~R  )
18 1pr 7702 . . . . 5  |-  1P  e.  P.
19 ltsrprg 7895 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  1P  e.  P. )  /\  ( A  e.  P.  /\  B  e.  P. )
)  ->  ( [ <. 1P ,  1P >. ]  ~R  <R  [ <. A ,  B >. ]  ~R  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2018, 18, 19mpanl12 436 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( [ <. 1P ,  1P >. ]  ~R  <R  [
<. A ,  B >. ]  ~R  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2117, 20bitrid 192 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 0R  <R  [ <. A ,  B >. ]  ~R  <->  ( 1P  +P.  B ) 
<P  ( 1P  +P.  A
) ) )
22 ltaprg 7767 . . . . 5  |-  ( ( B  e.  P.  /\  A  e.  P.  /\  1P  e.  P. )  ->  ( B  <P  A  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2318, 22mp3an3 1339 . . . 4  |-  ( ( B  e.  P.  /\  A  e.  P. )  ->  ( B  <P  A  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2423ancoms 268 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( B  <P  A  <->  ( 1P  +P.  B )  <P  ( 1P  +P.  A ) ) )
2521, 24bitr4d 191 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( 0R  <R  [ <. A ,  B >. ]  ~R  <->  B 
<P  A ) )
2612, 15, 25pm5.21nii 706 1  |-  ( 0R 
<R  [ <. A ,  B >. ]  ~R  <->  B  <P  A )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   <.cop 3646   class class class wbr 4059    X. cxp 4691   dom cdm 4693  (class class class)co 5967    Er wer 6640   [cec 6641   /.cqs 6642   P.cnp 7439   1Pc1p 7440    +P. cpp 7441    <P cltp 7443    ~R cer 7444   R.cnr 7445   0Rc0r 7446    <R cltr 7451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-i1p 7615  df-iplp 7616  df-iltp 7618  df-enr 7874  df-nr 7875  df-ltr 7878  df-0r 7879
This theorem is referenced by:  recexgt0sr  7921  mulgt0sr  7926  srpospr  7931  prsrpos  7933
  Copyright terms: Public domain W3C validator