ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfng Unicode version

Theorem mptfng 5448
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
Hypothesis
Ref Expression
mptfng.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptfng  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem mptfng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eueq 2974 . . 3  |-  ( B  e.  _V  <->  E! y 
y  =  B )
21ralbii 2536 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  A. x  e.  A  E! y  y  =  B )
3 mptfng.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
4 df-mpt 4146 . . . 4  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
53, 4eqtri 2250 . . 3  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }
65fnopabg 5446 . 2  |-  ( A. x  e.  A  E! y  y  =  B  <->  F  Fn  A )
72, 6bitri 184 1  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   E!weu 2077    e. wcel 2200   A.wral 2508   _Vcvv 2799   {copab 4143    |-> cmpt 4144    Fn wfn 5312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319  df-fn 5320
This theorem is referenced by:  fnmpt  5449  fnmpti  5451  mpteqb  5724  cc3  7450
  Copyright terms: Public domain W3C validator