ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfng Unicode version

Theorem mptfng 5380
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
Hypothesis
Ref Expression
mptfng.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptfng  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem mptfng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eueq 2932 . . 3  |-  ( B  e.  _V  <->  E! y 
y  =  B )
21ralbii 2500 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  A. x  e.  A  E! y  y  =  B )
3 mptfng.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
4 df-mpt 4093 . . . 4  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
53, 4eqtri 2214 . . 3  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }
65fnopabg 5378 . 2  |-  ( A. x  e.  A  E! y  y  =  B  <->  F  Fn  A )
72, 6bitri 184 1  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E!weu 2042    e. wcel 2164   A.wral 2472   _Vcvv 2760   {copab 4090    |-> cmpt 4091    Fn wfn 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-fun 5257  df-fn 5258
This theorem is referenced by:  fnmpt  5381  fnmpti  5383  mpteqb  5649  cc3  7330
  Copyright terms: Public domain W3C validator