ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mptfng Unicode version

Theorem mptfng 5383
Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
Hypothesis
Ref Expression
mptfng.1  |-  F  =  ( x  e.  A  |->  B )
Assertion
Ref Expression
mptfng  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    F( x)

Proof of Theorem mptfng
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eueq 2935 . . 3  |-  ( B  e.  _V  <->  E! y 
y  =  B )
21ralbii 2503 . 2  |-  ( A. x  e.  A  B  e.  _V  <->  A. x  e.  A  E! y  y  =  B )
3 mptfng.1 . . . 4  |-  F  =  ( x  e.  A  |->  B )
4 df-mpt 4096 . . . 4  |-  ( x  e.  A  |->  B )  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  =  B ) }
53, 4eqtri 2217 . . 3  |-  F  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  =  B ) }
65fnopabg 5381 . 2  |-  ( A. x  e.  A  E! y  y  =  B  <->  F  Fn  A )
72, 6bitri 184 1  |-  ( A. x  e.  A  B  e.  _V  <->  F  Fn  A
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   E!weu 2045    e. wcel 2167   A.wral 2475   _Vcvv 2763   {copab 4093    |-> cmpt 4094    Fn wfn 5253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-fun 5260  df-fn 5261
This theorem is referenced by:  fnmpt  5384  fnmpti  5386  mpteqb  5652  cc3  7335
  Copyright terms: Public domain W3C validator