ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evenelz Unicode version

Theorem evenelz 11406
Description: An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11340. (Contributed by AV, 22-Jun-2021.)
Assertion
Ref Expression
evenelz  |-  ( 2 
||  N  ->  N  e.  ZZ )

Proof of Theorem evenelz
StepHypRef Expression
1 dvdszrcl 11340 . 2  |-  ( 2 
||  N  ->  (
2  e.  ZZ  /\  N  e.  ZZ )
)
21simprd 113 1  |-  ( 2 
||  N  ->  N  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1461   class class class wbr 3893   2c2 8675   ZZcz 8952    || cdvds 11335
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-xp 4503  df-dvds 11336
This theorem is referenced by:  even2n  11413
  Copyright terms: Public domain W3C validator