| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > evenelz | GIF version | ||
| Description: An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11974. (Contributed by AV, 22-Jun-2021.) |
| Ref | Expression |
|---|---|
| evenelz | ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl 11974 | . 2 ⊢ (2 ∥ 𝑁 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 2 | 1 | simprd 114 | 1 ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 2c2 9058 ℤcz 9343 ∥ cdvds 11969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-dvds 11970 |
| This theorem is referenced by: even2n 12056 |
| Copyright terms: Public domain | W3C validator |