![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > evenelz | GIF version |
Description: An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 11293. (Contributed by AV, 22-Jun-2021.) |
Ref | Expression |
---|---|
evenelz | ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdszrcl 11293 | . 2 ⊢ (2 ∥ 𝑁 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
2 | 1 | simprd 113 | 1 ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1448 class class class wbr 3875 2c2 8629 ℤcz 8906 ∥ cdvds 11288 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-br 3876 df-opab 3930 df-xp 4483 df-dvds 11289 |
This theorem is referenced by: even2n 11366 |
Copyright terms: Public domain | W3C validator |