| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > evenelz | GIF version | ||
| Description: An even number is an integer. This follows immediately from the reverse closure of the divides relation, see dvdszrcl 12178. (Contributed by AV, 22-Jun-2021.) |
| Ref | Expression |
|---|---|
| evenelz | ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdszrcl 12178 | . 2 ⊢ (2 ∥ 𝑁 → (2 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
| 2 | 1 | simprd 114 | 1 ⊢ (2 ∥ 𝑁 → 𝑁 ∈ ℤ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 class class class wbr 4051 2c2 9107 ℤcz 9392 ∥ cdvds 12173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-xp 4689 df-dvds 12174 |
| This theorem is referenced by: even2n 12260 |
| Copyright terms: Public domain | W3C validator |