ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeo3 Unicode version

Theorem zeo3 11790
Description: An integer is even or odd. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
zeo3  |-  ( N  e.  ZZ  ->  (
2  ||  N  \/  -.  2  ||  N ) )

Proof of Theorem zeo3
StepHypRef Expression
1 peano2zm 9220 . . . 4  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
2 zeo 9287 . . . 4  |-  ( ( N  -  1 )  e.  ZZ  ->  (
( ( N  - 
1 )  /  2
)  e.  ZZ  \/  ( ( ( N  -  1 )  +  1 )  /  2
)  e.  ZZ ) )
31, 2syl 14 . . 3  |-  ( N  e.  ZZ  ->  (
( ( N  - 
1 )  /  2
)  e.  ZZ  \/  ( ( ( N  -  1 )  +  1 )  /  2
)  e.  ZZ ) )
4 zeo2 9288 . . . . . 6  |-  ( ( N  -  1 )  e.  ZZ  ->  (
( ( N  - 
1 )  /  2
)  e.  ZZ  <->  -.  (
( ( N  - 
1 )  +  1 )  /  2 )  e.  ZZ ) )
51, 4syl 14 . . . . 5  |-  ( N  e.  ZZ  ->  (
( ( N  - 
1 )  /  2
)  e.  ZZ  <->  -.  (
( ( N  - 
1 )  +  1 )  /  2 )  e.  ZZ ) )
6 zcn 9187 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  CC )
7 1cnd 7906 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  1  e.  CC )
86, 7npcand 8204 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  (
( N  -  1 )  +  1 )  =  N )
98oveq1d 5851 . . . . . . . 8  |-  ( N  e.  ZZ  ->  (
( ( N  - 
1 )  +  1 )  /  2 )  =  ( N  / 
2 ) )
109eleq1d 2233 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
( ( ( N  -  1 )  +  1 )  /  2
)  e.  ZZ  <->  ( N  /  2 )  e.  ZZ ) )
11 2z 9210 . . . . . . . 8  |-  2  e.  ZZ
12 2ne0 8940 . . . . . . . 8  |-  2  =/=  0
13 dvdsval2 11716 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  N  e.  ZZ )  ->  (
2  ||  N  <->  ( N  /  2 )  e.  ZZ ) )
1411, 12, 13mp3an12 1316 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
2  ||  N  <->  ( N  /  2 )  e.  ZZ ) )
1510, 14bitr4d 190 . . . . . 6  |-  ( N  e.  ZZ  ->  (
( ( ( N  -  1 )  +  1 )  /  2
)  e.  ZZ  <->  2  ||  N ) )
1615notbid 657 . . . . 5  |-  ( N  e.  ZZ  ->  ( -.  ( ( ( N  -  1 )  +  1 )  /  2
)  e.  ZZ  <->  -.  2  ||  N ) )
175, 16bitrd 187 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( N  - 
1 )  /  2
)  e.  ZZ  <->  -.  2  ||  N ) )
1817, 15orbi12d 783 . . 3  |-  ( N  e.  ZZ  ->  (
( ( ( N  -  1 )  / 
2 )  e.  ZZ  \/  ( ( ( N  -  1 )  +  1 )  /  2
)  e.  ZZ )  <-> 
( -.  2  ||  N  \/  2  ||  N ) ) )
193, 18mpbid 146 . 2  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  \/  2  ||  N ) )
2019orcomd 719 1  |-  ( N  e.  ZZ  ->  (
2  ||  N  \/  -.  2  ||  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 698    e. wcel 2135    =/= wne 2334   class class class wbr 3976  (class class class)co 5836   0cc0 7744   1c1 7745    + caddc 7747    - cmin 8060    / cdiv 8559   2c2 8899   ZZcz 9182    || cdvds 11713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-br 3977  df-opab 4038  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-n0 9106  df-z 9183  df-dvds 11714
This theorem is referenced by:  zeoxor  11791  zeo5  11810  m1exp1  11823  flodddiv4  11856
  Copyright terms: Public domain W3C validator