ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdszrcl Unicode version

Theorem dvdszrcl 11741
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )

Proof of Theorem dvdszrcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 11737 . . 3  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
2 opabssxp 4683 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  C_  ( ZZ  X.  ZZ )
31, 2eqsstri 3179 . 2  |-  ||  C_  ( ZZ  X.  ZZ )
43brel 4661 1  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   E.wrex 2449   class class class wbr 3987   {copab 4047    X. cxp 4607  (class class class)co 5850    x. cmul 7766   ZZcz 9199    || cdvds 11736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-xp 4615  df-dvds 11737
This theorem is referenced by:  dvdsmod0  11742  p1modz1  11743  dvdsmodexp  11744  dvdsabseq  11794  divconjdvds  11796  evenelz  11813  4dvdseven  11863  dfgcd2  11956  dvdsmulgcd  11967  isprm3  12059  dvdsnprmd  12066  pockthg  12296
  Copyright terms: Public domain W3C validator