ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdszrcl Unicode version

Theorem dvdszrcl 12136
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )

Proof of Theorem dvdszrcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 12132 . . 3  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
2 opabssxp 4750 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  C_  ( ZZ  X.  ZZ )
31, 2eqsstri 3225 . 2  |-  ||  C_  ( ZZ  X.  ZZ )
43brel 4728 1  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   E.wrex 2485   class class class wbr 4045   {copab 4105    X. cxp 4674  (class class class)co 5946    x. cmul 7932   ZZcz 9374    || cdvds 12131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-xp 4682  df-dvds 12132
This theorem is referenced by:  dvdsmod0  12137  p1modz1  12138  dvdsmodexp  12139  dvdsaddre2b  12185  dvdsabseq  12191  divconjdvds  12193  evenelz  12211  4dvdseven  12261  dfgcd2  12368  dvdsmulgcd  12379  isprm3  12473  dvdsnprmd  12480  pockthg  12713
  Copyright terms: Public domain W3C validator