Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdszrcl | Unicode version |
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
dvdszrcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvds 11750 | . . 3 | |
2 | opabssxp 4685 | . . 3 | |
3 | 1, 2 | eqsstri 3179 | . 2 |
4 | 3 | brel 4663 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3989 copab 4049 cxp 4609 (class class class)co 5853 cmul 7779 cz 9212 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-dvds 11750 |
This theorem is referenced by: dvdsmod0 11755 p1modz1 11756 dvdsmodexp 11757 dvdsabseq 11807 divconjdvds 11809 evenelz 11826 4dvdseven 11876 dfgcd2 11969 dvdsmulgcd 11980 isprm3 12072 dvdsnprmd 12079 pockthg 12309 |
Copyright terms: Public domain | W3C validator |