ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdszrcl Unicode version

Theorem dvdszrcl 12218
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )

Proof of Theorem dvdszrcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 12214 . . 3  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
2 opabssxp 4767 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  C_  ( ZZ  X.  ZZ )
31, 2eqsstri 3233 . 2  |-  ||  C_  ( ZZ  X.  ZZ )
43brel 4745 1  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   E.wrex 2487   class class class wbr 4059   {copab 4120    X. cxp 4691  (class class class)co 5967    x. cmul 7965   ZZcz 9407    || cdvds 12213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-dvds 12214
This theorem is referenced by:  dvdsmod0  12219  p1modz1  12220  dvdsmodexp  12221  dvdsaddre2b  12267  dvdsabseq  12273  divconjdvds  12275  evenelz  12293  4dvdseven  12343  dfgcd2  12450  dvdsmulgcd  12461  isprm3  12555  dvdsnprmd  12562  pockthg  12795
  Copyright terms: Public domain W3C validator