ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdszrcl Unicode version

Theorem dvdszrcl 11957
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )

Proof of Theorem dvdszrcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 11953 . . 3  |-  ||  =  { <. x ,  y
>.  |  ( (
x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x
)  =  y ) }
2 opabssxp 4737 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ZZ  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  ( z  x.  x )  =  y ) }  C_  ( ZZ  X.  ZZ )
31, 2eqsstri 3215 . 2  |-  ||  C_  ( ZZ  X.  ZZ )
43brel 4715 1  |-  ( X 
||  Y  ->  ( X  e.  ZZ  /\  Y  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   E.wrex 2476   class class class wbr 4033   {copab 4093    X. cxp 4661  (class class class)co 5922    x. cmul 7884   ZZcz 9326    || cdvds 11952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-dvds 11953
This theorem is referenced by:  dvdsmod0  11958  p1modz1  11959  dvdsmodexp  11960  dvdsaddre2b  12006  dvdsabseq  12012  divconjdvds  12014  evenelz  12032  4dvdseven  12082  dfgcd2  12181  dvdsmulgcd  12192  isprm3  12286  dvdsnprmd  12293  pockthg  12526
  Copyright terms: Public domain W3C validator