| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > copsex2g | Unicode version | ||
| Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| copsex2g.1 |
|
| Ref | Expression |
|---|---|
| copsex2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2814 |
. 2
| |
| 2 | elisset 2814 |
. 2
| |
| 3 | eeanv 1983 |
. . 3
| |
| 4 | nfe1 1542 |
. . . . 5
| |
| 5 | nfv 1574 |
. . . . 5
| |
| 6 | 4, 5 | nfbi 1635 |
. . . 4
|
| 7 | nfe1 1542 |
. . . . . . 7
| |
| 8 | 7 | nfex 1683 |
. . . . . 6
|
| 9 | nfv 1574 |
. . . . . 6
| |
| 10 | 8, 9 | nfbi 1635 |
. . . . 5
|
| 11 | opeq12 3859 |
. . . . . . 7
| |
| 12 | copsexg 4330 |
. . . . . . . 8
| |
| 13 | 12 | eqcoms 2232 |
. . . . . . 7
|
| 14 | 11, 13 | syl 14 |
. . . . . 6
|
| 15 | copsex2g.1 |
. . . . . 6
| |
| 16 | 14, 15 | bitr3d 190 |
. . . . 5
|
| 17 | 10, 16 | exlimi 1640 |
. . . 4
|
| 18 | 6, 17 | exlimi 1640 |
. . 3
|
| 19 | 3, 18 | sylbir 135 |
. 2
|
| 20 | 1, 2, 19 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 |
| This theorem is referenced by: opelopabga 4351 ov6g 6143 ltresr 8026 |
| Copyright terms: Public domain | W3C validator |