| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > copsex2g | Unicode version | ||
| Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| copsex2g.1 |
|
| Ref | Expression |
|---|---|
| copsex2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2791 |
. 2
| |
| 2 | elisset 2791 |
. 2
| |
| 3 | eeanv 1961 |
. . 3
| |
| 4 | nfe1 1520 |
. . . . 5
| |
| 5 | nfv 1552 |
. . . . 5
| |
| 6 | 4, 5 | nfbi 1613 |
. . . 4
|
| 7 | nfe1 1520 |
. . . . . . 7
| |
| 8 | 7 | nfex 1661 |
. . . . . 6
|
| 9 | nfv 1552 |
. . . . . 6
| |
| 10 | 8, 9 | nfbi 1613 |
. . . . 5
|
| 11 | opeq12 3835 |
. . . . . . 7
| |
| 12 | copsexg 4306 |
. . . . . . . 8
| |
| 13 | 12 | eqcoms 2210 |
. . . . . . 7
|
| 14 | 11, 13 | syl 14 |
. . . . . 6
|
| 15 | copsex2g.1 |
. . . . . 6
| |
| 16 | 14, 15 | bitr3d 190 |
. . . . 5
|
| 17 | 10, 16 | exlimi 1618 |
. . . 4
|
| 18 | 6, 17 | exlimi 1618 |
. . 3
|
| 19 | 3, 18 | sylbir 135 |
. 2
|
| 20 | 1, 2, 19 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 |
| This theorem is referenced by: opelopabga 4327 ov6g 6107 ltresr 7987 |
| Copyright terms: Public domain | W3C validator |