ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  copsex2g Unicode version

Theorem copsex2g 4049
Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
copsex2g.1  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
Assertion
Ref Expression
copsex2g  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
Distinct variable groups:    x, y, ps    x, A, y    x, B, y
Allowed substitution hints:    ph( x, y)    V( x, y)    W( x, y)

Proof of Theorem copsex2g
StepHypRef Expression
1 elisset 2627 . 2  |-  ( A  e.  V  ->  E. x  x  =  A )
2 elisset 2627 . 2  |-  ( B  e.  W  ->  E. y 
y  =  B )
3 eeanv 1852 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
4 nfe1 1428 . . . . 5  |-  F/ x E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )
5 nfv 1464 . . . . 5  |-  F/ x ps
64, 5nfbi 1524 . . . 4  |-  F/ x
( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps )
7 nfe1 1428 . . . . . . 7  |-  F/ y E. y ( <. A ,  B >.  = 
<. x ,  y >.  /\  ph )
87nfex 1571 . . . . . 6  |-  F/ y E. x E. y
( <. A ,  B >.  =  <. x ,  y
>.  /\  ph )
9 nfv 1464 . . . . . 6  |-  F/ y ps
108, 9nfbi 1524 . . . . 5  |-  F/ y ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps )
11 opeq12 3609 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  -> 
<. x ,  y >.  =  <. A ,  B >. )
12 copsexg 4047 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. x ,  y >.  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
1312eqcoms 2088 . . . . . . 7  |-  ( <.
x ,  y >.  =  <. A ,  B >.  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
1411, 13syl 14 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) ) )
15 copsex2g.1 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
1614, 15bitr3d 188 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
1710, 16exlimi 1528 . . . 4  |-  ( E. y ( x  =  A  /\  y  =  B )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ps )
)
186, 17exlimi 1528 . . 3  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
193, 18sylbir 133 . 2  |-  ( ( E. x  x  =  A  /\  E. y 
y  =  B )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
201, 2, 19syl2an 283 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1287   E.wex 1424    e. wcel 1436   <.cop 3434
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-v 2617  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440
This theorem is referenced by:  opelopabga  4066  ov6g  5741  ltresr  7323
  Copyright terms: Public domain W3C validator