| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > copsex2g | Unicode version | ||
| Description: Implicit substitution inference for ordered pairs. (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| copsex2g.1 |
|
| Ref | Expression |
|---|---|
| copsex2g |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2777 |
. 2
| |
| 2 | elisset 2777 |
. 2
| |
| 3 | eeanv 1951 |
. . 3
| |
| 4 | nfe1 1510 |
. . . . 5
| |
| 5 | nfv 1542 |
. . . . 5
| |
| 6 | 4, 5 | nfbi 1603 |
. . . 4
|
| 7 | nfe1 1510 |
. . . . . . 7
| |
| 8 | 7 | nfex 1651 |
. . . . . 6
|
| 9 | nfv 1542 |
. . . . . 6
| |
| 10 | 8, 9 | nfbi 1603 |
. . . . 5
|
| 11 | opeq12 3811 |
. . . . . . 7
| |
| 12 | copsexg 4278 |
. . . . . . . 8
| |
| 13 | 12 | eqcoms 2199 |
. . . . . . 7
|
| 14 | 11, 13 | syl 14 |
. . . . . 6
|
| 15 | copsex2g.1 |
. . . . . 6
| |
| 16 | 14, 15 | bitr3d 190 |
. . . . 5
|
| 17 | 10, 16 | exlimi 1608 |
. . . 4
|
| 18 | 6, 17 | exlimi 1608 |
. . 3
|
| 19 | 3, 18 | sylbir 135 |
. 2
|
| 20 | 1, 2, 19 | syl2an 289 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 |
| This theorem is referenced by: opelopabga 4298 ov6g 6065 ltresr 7923 |
| Copyright terms: Public domain | W3C validator |