ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmulcl Unicode version

Theorem nnmulcl 9003
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnmulcl  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )

Proof of Theorem nnmulcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5926 . . . . 5  |-  ( x  =  1  ->  ( A  x.  x )  =  ( A  x.  1 ) )
21eleq1d 2262 . . . 4  |-  ( x  =  1  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  1 )  e.  NN ) )
32imbi2d 230 . . 3  |-  ( x  =  1  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  1 )  e.  NN ) ) )
4 oveq2 5926 . . . . 5  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
54eleq1d 2262 . . . 4  |-  ( x  =  y  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  y )  e.  NN ) )
65imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  y
)  e.  NN ) ) )
7 oveq2 5926 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A  x.  x )  =  ( A  x.  ( y  +  1 ) ) )
87eleq1d 2262 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  ( y  +  1 ) )  e.  NN ) )
98imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  (
y  +  1 ) )  e.  NN ) ) )
10 oveq2 5926 . . . . 5  |-  ( x  =  B  ->  ( A  x.  x )  =  ( A  x.  B ) )
1110eleq1d 2262 . . . 4  |-  ( x  =  B  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  B )  e.  NN ) )
1211imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  B
)  e.  NN ) ) )
13 nncn 8990 . . . 4  |-  ( A  e.  NN  ->  A  e.  CC )
14 mulrid 8016 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
1514eleq1d 2262 . . . . 5  |-  ( A  e.  CC  ->  (
( A  x.  1 )  e.  NN  <->  A  e.  NN ) )
1615biimprd 158 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  NN  ->  ( A  x.  1 )  e.  NN ) )
1713, 16mpcom 36 . . 3  |-  ( A  e.  NN  ->  ( A  x.  1 )  e.  NN )
18 nnaddcl 9002 . . . . . . . 8  |-  ( ( ( A  x.  y
)  e.  NN  /\  A  e.  NN )  ->  ( ( A  x.  y )  +  A
)  e.  NN )
1918ancoms 268 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( A  x.  y
)  e.  NN )  ->  ( ( A  x.  y )  +  A )  e.  NN )
20 nncn 8990 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
21 ax-1cn 7965 . . . . . . . . . . 11  |-  1  e.  CC
22 adddi 8004 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( y  +  1 ) )  =  ( ( A  x.  y )  +  ( A  x.  1 ) ) )
2321, 22mp3an3 1337 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  ( A  x.  1 ) ) )
2414oveq2d 5934 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( A  x.  y
)  +  ( A  x.  1 ) )  =  ( ( A  x.  y )  +  A ) )
2524adantr 276 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( A  x.  y )  +  ( A  x.  1 ) )  =  ( ( A  x.  y )  +  A ) )
2623, 25eqtrd 2226 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  A ) )
2713, 20, 26syl2an 289 . . . . . . . 8  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  A ) )
2827eleq1d 2262 . . . . . . 7  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  x.  ( y  +  1 ) )  e.  NN  <->  ( ( A  x.  y
)  +  A )  e.  NN ) )
2919, 28imbitrrid 156 . . . . . 6  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  e.  NN  /\  ( A  x.  y )  e.  NN )  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) )
3029exp4b 367 . . . . 5  |-  ( A  e.  NN  ->  (
y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  x.  y
)  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) ) )
3130pm2.43b 52 . . . 4  |-  ( y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  x.  y
)  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) )
3231a2d 26 . . 3  |-  ( y  e.  NN  ->  (
( A  e.  NN  ->  ( A  x.  y
)  e.  NN )  ->  ( A  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) )
333, 6, 9, 12, 17, 32nnind 8998 . 2  |-  ( B  e.  NN  ->  ( A  e.  NN  ->  ( A  x.  B )  e.  NN ) )
3433impcom 125 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870   1c1 7873    + caddc 7875    x. cmul 7877   NNcn 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-sep 4147  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-1rid 7979  ax-cnre 7983
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-inn 8983
This theorem is referenced by:  nnmulcli  9004  nndivtr  9024  nnmulcld  9031  nn0mulcl  9276  qaddcl  9700  qmulcl  9702  modqmulnn  10413  nnexpcl  10623  nnsqcl  10680  faccl  10806  facdiv  10809  faclbnd3  10814  bcrpcl  10824  trirecip  11644  fprodnncl  11753  lcmgcdlem  12215  lcmgcdnn  12220  pcmptcl  12480  pcmpt  12481  4sqlem12  12540  mulgnnass  13227  lgseisenlem1  15186  lgseisenlem2  15187  lgseisenlem3  15188  lgseisenlem4  15189  lgsquadlem1  15191
  Copyright terms: Public domain W3C validator