| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcl | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
| Ref | Expression |
|---|---|
| nnmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6008 |
. . . . 5
| |
| 2 | 1 | eleq1d 2298 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 6008 |
. . . . 5
| |
| 5 | 4 | eleq1d 2298 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | oveq2 6008 |
. . . . 5
| |
| 8 | 7 | eleq1d 2298 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | oveq2 6008 |
. . . . 5
| |
| 11 | 10 | eleq1d 2298 |
. . . 4
|
| 12 | 11 | imbi2d 230 |
. . 3
|
| 13 | nncn 9114 |
. . . 4
| |
| 14 | mulrid 8139 |
. . . . . 6
| |
| 15 | 14 | eleq1d 2298 |
. . . . 5
|
| 16 | 15 | biimprd 158 |
. . . 4
|
| 17 | 13, 16 | mpcom 36 |
. . 3
|
| 18 | nnaddcl 9126 |
. . . . . . . 8
| |
| 19 | 18 | ancoms 268 |
. . . . . . 7
|
| 20 | nncn 9114 |
. . . . . . . . 9
| |
| 21 | ax-1cn 8088 |
. . . . . . . . . . 11
| |
| 22 | adddi 8127 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | mp3an3 1360 |
. . . . . . . . . 10
|
| 24 | 14 | oveq2d 6016 |
. . . . . . . . . . 11
|
| 25 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 26 | 23, 25 | eqtrd 2262 |
. . . . . . . . 9
|
| 27 | 13, 20, 26 | syl2an 289 |
. . . . . . . 8
|
| 28 | 27 | eleq1d 2298 |
. . . . . . 7
|
| 29 | 19, 28 | imbitrrid 156 |
. . . . . 6
|
| 30 | 29 | exp4b 367 |
. . . . 5
|
| 31 | 30 | pm2.43b 52 |
. . . 4
|
| 32 | 31 | a2d 26 |
. . 3
|
| 33 | 3, 6, 9, 12, 17, 32 | nnind 9122 |
. 2
|
| 34 | 33 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4201 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-1rid 8102 ax-cnre 8106 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-inn 9107 |
| This theorem is referenced by: nnmulcli 9128 nndivtr 9148 nnmulcld 9155 nn0mulcl 9401 qaddcl 9826 qmulcl 9828 modqmulnn 10559 nnexpcl 10769 nnsqcl 10826 faccl 10952 facdiv 10955 faclbnd3 10960 bcrpcl 10970 trirecip 12007 fprodnncl 12116 lcmgcdlem 12594 lcmgcdnn 12599 pcmptcl 12860 pcmpt 12861 4sqlem12 12920 mulgnnass 13689 lgseisenlem1 15743 lgseisenlem2 15744 lgseisenlem3 15745 lgseisenlem4 15746 lgsquadlem1 15750 lgsquadlem2 15751 |
| Copyright terms: Public domain | W3C validator |