| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcl | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
| Ref | Expression |
|---|---|
| nnmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5933 |
. . . . 5
| |
| 2 | 1 | eleq1d 2265 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 5933 |
. . . . 5
| |
| 5 | 4 | eleq1d 2265 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | oveq2 5933 |
. . . . 5
| |
| 8 | 7 | eleq1d 2265 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | oveq2 5933 |
. . . . 5
| |
| 11 | 10 | eleq1d 2265 |
. . . 4
|
| 12 | 11 | imbi2d 230 |
. . 3
|
| 13 | nncn 9017 |
. . . 4
| |
| 14 | mulrid 8042 |
. . . . . 6
| |
| 15 | 14 | eleq1d 2265 |
. . . . 5
|
| 16 | 15 | biimprd 158 |
. . . 4
|
| 17 | 13, 16 | mpcom 36 |
. . 3
|
| 18 | nnaddcl 9029 |
. . . . . . . 8
| |
| 19 | 18 | ancoms 268 |
. . . . . . 7
|
| 20 | nncn 9017 |
. . . . . . . . 9
| |
| 21 | ax-1cn 7991 |
. . . . . . . . . . 11
| |
| 22 | adddi 8030 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | mp3an3 1337 |
. . . . . . . . . 10
|
| 24 | 14 | oveq2d 5941 |
. . . . . . . . . . 11
|
| 25 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 26 | 23, 25 | eqtrd 2229 |
. . . . . . . . 9
|
| 27 | 13, 20, 26 | syl2an 289 |
. . . . . . . 8
|
| 28 | 27 | eleq1d 2265 |
. . . . . . 7
|
| 29 | 19, 28 | imbitrrid 156 |
. . . . . 6
|
| 30 | 29 | exp4b 367 |
. . . . 5
|
| 31 | 30 | pm2.43b 52 |
. . . 4
|
| 32 | 31 | a2d 26 |
. . 3
|
| 33 | 3, 6, 9, 12, 17, 32 | nnind 9025 |
. 2
|
| 34 | 33 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-mulcom 7999 ax-addass 8000 ax-mulass 8001 ax-distr 8002 ax-1rid 8005 ax-cnre 8009 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9010 |
| This theorem is referenced by: nnmulcli 9031 nndivtr 9051 nnmulcld 9058 nn0mulcl 9304 qaddcl 9728 qmulcl 9730 modqmulnn 10453 nnexpcl 10663 nnsqcl 10720 faccl 10846 facdiv 10849 faclbnd3 10854 bcrpcl 10864 trirecip 11685 fprodnncl 11794 lcmgcdlem 12272 lcmgcdnn 12277 pcmptcl 12538 pcmpt 12539 4sqlem12 12598 mulgnnass 13365 lgseisenlem1 15419 lgseisenlem2 15420 lgseisenlem3 15421 lgseisenlem4 15422 lgsquadlem1 15426 lgsquadlem2 15427 |
| Copyright terms: Public domain | W3C validator |