ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmulcl Unicode version

Theorem nnmulcl 8899
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnmulcl  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )

Proof of Theorem nnmulcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5861 . . . . 5  |-  ( x  =  1  ->  ( A  x.  x )  =  ( A  x.  1 ) )
21eleq1d 2239 . . . 4  |-  ( x  =  1  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  1 )  e.  NN ) )
32imbi2d 229 . . 3  |-  ( x  =  1  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  1 )  e.  NN ) ) )
4 oveq2 5861 . . . . 5  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
54eleq1d 2239 . . . 4  |-  ( x  =  y  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  y )  e.  NN ) )
65imbi2d 229 . . 3  |-  ( x  =  y  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  y
)  e.  NN ) ) )
7 oveq2 5861 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A  x.  x )  =  ( A  x.  ( y  +  1 ) ) )
87eleq1d 2239 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  ( y  +  1 ) )  e.  NN ) )
98imbi2d 229 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  (
y  +  1 ) )  e.  NN ) ) )
10 oveq2 5861 . . . . 5  |-  ( x  =  B  ->  ( A  x.  x )  =  ( A  x.  B ) )
1110eleq1d 2239 . . . 4  |-  ( x  =  B  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  B )  e.  NN ) )
1211imbi2d 229 . . 3  |-  ( x  =  B  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  B
)  e.  NN ) ) )
13 nncn 8886 . . . 4  |-  ( A  e.  NN  ->  A  e.  CC )
14 mulid1 7917 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
1514eleq1d 2239 . . . . 5  |-  ( A  e.  CC  ->  (
( A  x.  1 )  e.  NN  <->  A  e.  NN ) )
1615biimprd 157 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  NN  ->  ( A  x.  1 )  e.  NN ) )
1713, 16mpcom 36 . . 3  |-  ( A  e.  NN  ->  ( A  x.  1 )  e.  NN )
18 nnaddcl 8898 . . . . . . . 8  |-  ( ( ( A  x.  y
)  e.  NN  /\  A  e.  NN )  ->  ( ( A  x.  y )  +  A
)  e.  NN )
1918ancoms 266 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( A  x.  y
)  e.  NN )  ->  ( ( A  x.  y )  +  A )  e.  NN )
20 nncn 8886 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
21 ax-1cn 7867 . . . . . . . . . . 11  |-  1  e.  CC
22 adddi 7906 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( y  +  1 ) )  =  ( ( A  x.  y )  +  ( A  x.  1 ) ) )
2321, 22mp3an3 1321 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  ( A  x.  1 ) ) )
2414oveq2d 5869 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( A  x.  y
)  +  ( A  x.  1 ) )  =  ( ( A  x.  y )  +  A ) )
2524adantr 274 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( A  x.  y )  +  ( A  x.  1 ) )  =  ( ( A  x.  y )  +  A ) )
2623, 25eqtrd 2203 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  A ) )
2713, 20, 26syl2an 287 . . . . . . . 8  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  A ) )
2827eleq1d 2239 . . . . . . 7  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  x.  ( y  +  1 ) )  e.  NN  <->  ( ( A  x.  y
)  +  A )  e.  NN ) )
2919, 28syl5ibr 155 . . . . . 6  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  e.  NN  /\  ( A  x.  y )  e.  NN )  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) )
3029exp4b 365 . . . . 5  |-  ( A  e.  NN  ->  (
y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  x.  y
)  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) ) )
3130pm2.43b 52 . . . 4  |-  ( y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  x.  y
)  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) )
3231a2d 26 . . 3  |-  ( y  e.  NN  ->  (
( A  e.  NN  ->  ( A  x.  y
)  e.  NN )  ->  ( A  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) )
333, 6, 9, 12, 17, 32nnind 8894 . 2  |-  ( B  e.  NN  ->  ( A  e.  NN  ->  ( A  x.  B )  e.  NN ) )
3433impcom 124 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141  (class class class)co 5853   CCcc 7772   1c1 7775    + caddc 7777    x. cmul 7779   NNcn 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-sep 4107  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-1rid 7881  ax-cnre 7885
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-iota 5160  df-fv 5206  df-ov 5856  df-inn 8879
This theorem is referenced by:  nnmulcli  8900  nndivtr  8920  nnmulcld  8927  nn0mulcl  9171  qaddcl  9594  qmulcl  9596  modqmulnn  10298  nnexpcl  10489  nnsqcl  10545  faccl  10669  facdiv  10672  faclbnd3  10677  bcrpcl  10687  trirecip  11464  fprodnncl  11573  lcmgcdlem  12031  lcmgcdnn  12036  pcmptcl  12294  pcmpt  12295
  Copyright terms: Public domain W3C validator