ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmulcl Unicode version

Theorem nnmulcl 9092
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnmulcl  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )

Proof of Theorem nnmulcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . 5  |-  ( x  =  1  ->  ( A  x.  x )  =  ( A  x.  1 ) )
21eleq1d 2276 . . . 4  |-  ( x  =  1  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  1 )  e.  NN ) )
32imbi2d 230 . . 3  |-  ( x  =  1  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  1 )  e.  NN ) ) )
4 oveq2 5975 . . . . 5  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
54eleq1d 2276 . . . 4  |-  ( x  =  y  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  y )  e.  NN ) )
65imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  y
)  e.  NN ) ) )
7 oveq2 5975 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A  x.  x )  =  ( A  x.  ( y  +  1 ) ) )
87eleq1d 2276 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  ( y  +  1 ) )  e.  NN ) )
98imbi2d 230 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  (
y  +  1 ) )  e.  NN ) ) )
10 oveq2 5975 . . . . 5  |-  ( x  =  B  ->  ( A  x.  x )  =  ( A  x.  B ) )
1110eleq1d 2276 . . . 4  |-  ( x  =  B  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  B )  e.  NN ) )
1211imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  B
)  e.  NN ) ) )
13 nncn 9079 . . . 4  |-  ( A  e.  NN  ->  A  e.  CC )
14 mulrid 8104 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
1514eleq1d 2276 . . . . 5  |-  ( A  e.  CC  ->  (
( A  x.  1 )  e.  NN  <->  A  e.  NN ) )
1615biimprd 158 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  NN  ->  ( A  x.  1 )  e.  NN ) )
1713, 16mpcom 36 . . 3  |-  ( A  e.  NN  ->  ( A  x.  1 )  e.  NN )
18 nnaddcl 9091 . . . . . . . 8  |-  ( ( ( A  x.  y
)  e.  NN  /\  A  e.  NN )  ->  ( ( A  x.  y )  +  A
)  e.  NN )
1918ancoms 268 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( A  x.  y
)  e.  NN )  ->  ( ( A  x.  y )  +  A )  e.  NN )
20 nncn 9079 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
21 ax-1cn 8053 . . . . . . . . . . 11  |-  1  e.  CC
22 adddi 8092 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( y  +  1 ) )  =  ( ( A  x.  y )  +  ( A  x.  1 ) ) )
2321, 22mp3an3 1339 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  ( A  x.  1 ) ) )
2414oveq2d 5983 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( A  x.  y
)  +  ( A  x.  1 ) )  =  ( ( A  x.  y )  +  A ) )
2524adantr 276 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( A  x.  y )  +  ( A  x.  1 ) )  =  ( ( A  x.  y )  +  A ) )
2623, 25eqtrd 2240 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  A ) )
2713, 20, 26syl2an 289 . . . . . . . 8  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  A ) )
2827eleq1d 2276 . . . . . . 7  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  x.  ( y  +  1 ) )  e.  NN  <->  ( ( A  x.  y
)  +  A )  e.  NN ) )
2919, 28imbitrrid 156 . . . . . 6  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  e.  NN  /\  ( A  x.  y )  e.  NN )  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) )
3029exp4b 367 . . . . 5  |-  ( A  e.  NN  ->  (
y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  x.  y
)  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) ) )
3130pm2.43b 52 . . . 4  |-  ( y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  x.  y
)  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) )
3231a2d 26 . . 3  |-  ( y  e.  NN  ->  (
( A  e.  NN  ->  ( A  x.  y
)  e.  NN )  ->  ( A  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) )
333, 6, 9, 12, 17, 32nnind 9087 . 2  |-  ( B  e.  NN  ->  ( A  e.  NN  ->  ( A  x.  B )  e.  NN ) )
3433impcom 125 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    x. cmul 7965   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-1rid 8067  ax-cnre 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-iota 5251  df-fv 5298  df-ov 5970  df-inn 9072
This theorem is referenced by:  nnmulcli  9093  nndivtr  9113  nnmulcld  9120  nn0mulcl  9366  qaddcl  9791  qmulcl  9793  modqmulnn  10524  nnexpcl  10734  nnsqcl  10791  faccl  10917  facdiv  10920  faclbnd3  10925  bcrpcl  10935  trirecip  11927  fprodnncl  12036  lcmgcdlem  12514  lcmgcdnn  12519  pcmptcl  12780  pcmpt  12781  4sqlem12  12840  mulgnnass  13608  lgseisenlem1  15662  lgseisenlem2  15663  lgseisenlem3  15664  lgseisenlem4  15665  lgsquadlem1  15669  lgsquadlem2  15670
  Copyright terms: Public domain W3C validator