| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcl | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
| Ref | Expression |
|---|---|
| nnmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5933 |
. . . . 5
| |
| 2 | 1 | eleq1d 2265 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 5933 |
. . . . 5
| |
| 5 | 4 | eleq1d 2265 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | oveq2 5933 |
. . . . 5
| |
| 8 | 7 | eleq1d 2265 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | oveq2 5933 |
. . . . 5
| |
| 11 | 10 | eleq1d 2265 |
. . . 4
|
| 12 | 11 | imbi2d 230 |
. . 3
|
| 13 | nncn 9015 |
. . . 4
| |
| 14 | mulrid 8040 |
. . . . . 6
| |
| 15 | 14 | eleq1d 2265 |
. . . . 5
|
| 16 | 15 | biimprd 158 |
. . . 4
|
| 17 | 13, 16 | mpcom 36 |
. . 3
|
| 18 | nnaddcl 9027 |
. . . . . . . 8
| |
| 19 | 18 | ancoms 268 |
. . . . . . 7
|
| 20 | nncn 9015 |
. . . . . . . . 9
| |
| 21 | ax-1cn 7989 |
. . . . . . . . . . 11
| |
| 22 | adddi 8028 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | mp3an3 1337 |
. . . . . . . . . 10
|
| 24 | 14 | oveq2d 5941 |
. . . . . . . . . . 11
|
| 25 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 26 | 23, 25 | eqtrd 2229 |
. . . . . . . . 9
|
| 27 | 13, 20, 26 | syl2an 289 |
. . . . . . . 8
|
| 28 | 27 | eleq1d 2265 |
. . . . . . 7
|
| 29 | 19, 28 | imbitrrid 156 |
. . . . . 6
|
| 30 | 29 | exp4b 367 |
. . . . 5
|
| 31 | 30 | pm2.43b 52 |
. . . 4
|
| 32 | 31 | a2d 26 |
. . 3
|
| 33 | 3, 6, 9, 12, 17, 32 | nnind 9023 |
. 2
|
| 34 | 33 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-1rid 8003 ax-cnre 8007 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 |
| This theorem is referenced by: nnmulcli 9029 nndivtr 9049 nnmulcld 9056 nn0mulcl 9302 qaddcl 9726 qmulcl 9728 modqmulnn 10451 nnexpcl 10661 nnsqcl 10718 faccl 10844 facdiv 10847 faclbnd3 10852 bcrpcl 10862 trirecip 11683 fprodnncl 11792 lcmgcdlem 12270 lcmgcdnn 12275 pcmptcl 12536 pcmpt 12537 4sqlem12 12596 mulgnnass 13363 lgseisenlem1 15395 lgseisenlem2 15396 lgseisenlem3 15397 lgseisenlem4 15398 lgsquadlem1 15402 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |