| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcl | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
| Ref | Expression |
|---|---|
| nnmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5930 |
. . . . 5
| |
| 2 | 1 | eleq1d 2265 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 5930 |
. . . . 5
| |
| 5 | 4 | eleq1d 2265 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | oveq2 5930 |
. . . . 5
| |
| 8 | 7 | eleq1d 2265 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | oveq2 5930 |
. . . . 5
| |
| 11 | 10 | eleq1d 2265 |
. . . 4
|
| 12 | 11 | imbi2d 230 |
. . 3
|
| 13 | nncn 8998 |
. . . 4
| |
| 14 | mulrid 8023 |
. . . . . 6
| |
| 15 | 14 | eleq1d 2265 |
. . . . 5
|
| 16 | 15 | biimprd 158 |
. . . 4
|
| 17 | 13, 16 | mpcom 36 |
. . 3
|
| 18 | nnaddcl 9010 |
. . . . . . . 8
| |
| 19 | 18 | ancoms 268 |
. . . . . . 7
|
| 20 | nncn 8998 |
. . . . . . . . 9
| |
| 21 | ax-1cn 7972 |
. . . . . . . . . . 11
| |
| 22 | adddi 8011 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | mp3an3 1337 |
. . . . . . . . . 10
|
| 24 | 14 | oveq2d 5938 |
. . . . . . . . . . 11
|
| 25 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 26 | 23, 25 | eqtrd 2229 |
. . . . . . . . 9
|
| 27 | 13, 20, 26 | syl2an 289 |
. . . . . . . 8
|
| 28 | 27 | eleq1d 2265 |
. . . . . . 7
|
| 29 | 19, 28 | imbitrrid 156 |
. . . . . 6
|
| 30 | 29 | exp4b 367 |
. . . . 5
|
| 31 | 30 | pm2.43b 52 |
. . . 4
|
| 32 | 31 | a2d 26 |
. . 3
|
| 33 | 3, 6, 9, 12, 17, 32 | nnind 9006 |
. 2
|
| 34 | 33 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-1rid 7986 ax-cnre 7990 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 |
| This theorem is referenced by: nnmulcli 9012 nndivtr 9032 nnmulcld 9039 nn0mulcl 9285 qaddcl 9709 qmulcl 9711 modqmulnn 10434 nnexpcl 10644 nnsqcl 10701 faccl 10827 facdiv 10830 faclbnd3 10835 bcrpcl 10845 trirecip 11666 fprodnncl 11775 lcmgcdlem 12245 lcmgcdnn 12250 pcmptcl 12511 pcmpt 12512 4sqlem12 12571 mulgnnass 13287 lgseisenlem1 15311 lgseisenlem2 15312 lgseisenlem3 15313 lgseisenlem4 15314 lgsquadlem1 15318 lgsquadlem2 15319 |
| Copyright terms: Public domain | W3C validator |