Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnmulcl | Unicode version |
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
Ref | Expression |
---|---|
nnmulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5861 | . . . . 5 | |
2 | 1 | eleq1d 2239 | . . . 4 |
3 | 2 | imbi2d 229 | . . 3 |
4 | oveq2 5861 | . . . . 5 | |
5 | 4 | eleq1d 2239 | . . . 4 |
6 | 5 | imbi2d 229 | . . 3 |
7 | oveq2 5861 | . . . . 5 | |
8 | 7 | eleq1d 2239 | . . . 4 |
9 | 8 | imbi2d 229 | . . 3 |
10 | oveq2 5861 | . . . . 5 | |
11 | 10 | eleq1d 2239 | . . . 4 |
12 | 11 | imbi2d 229 | . . 3 |
13 | nncn 8886 | . . . 4 | |
14 | mulid1 7917 | . . . . . 6 | |
15 | 14 | eleq1d 2239 | . . . . 5 |
16 | 15 | biimprd 157 | . . . 4 |
17 | 13, 16 | mpcom 36 | . . 3 |
18 | nnaddcl 8898 | . . . . . . . 8 | |
19 | 18 | ancoms 266 | . . . . . . 7 |
20 | nncn 8886 | . . . . . . . . 9 | |
21 | ax-1cn 7867 | . . . . . . . . . . 11 | |
22 | adddi 7906 | . . . . . . . . . . 11 | |
23 | 21, 22 | mp3an3 1321 | . . . . . . . . . 10 |
24 | 14 | oveq2d 5869 | . . . . . . . . . . 11 |
25 | 24 | adantr 274 | . . . . . . . . . 10 |
26 | 23, 25 | eqtrd 2203 | . . . . . . . . 9 |
27 | 13, 20, 26 | syl2an 287 | . . . . . . . 8 |
28 | 27 | eleq1d 2239 | . . . . . . 7 |
29 | 19, 28 | syl5ibr 155 | . . . . . 6 |
30 | 29 | exp4b 365 | . . . . 5 |
31 | 30 | pm2.43b 52 | . . . 4 |
32 | 31 | a2d 26 | . . 3 |
33 | 3, 6, 9, 12, 17, 32 | nnind 8894 | . 2 |
34 | 33 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 c1 7775 caddc 7777 cmul 7779 cn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 |
This theorem is referenced by: nnmulcli 8900 nndivtr 8920 nnmulcld 8927 nn0mulcl 9171 qaddcl 9594 qmulcl 9596 modqmulnn 10298 nnexpcl 10489 nnsqcl 10545 faccl 10669 facdiv 10672 faclbnd3 10677 bcrpcl 10687 trirecip 11464 fprodnncl 11573 lcmgcdlem 12031 lcmgcdnn 12036 pcmptcl 12294 pcmpt 12295 |
Copyright terms: Public domain | W3C validator |