ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnmulcl Unicode version

Theorem nnmulcl 8415
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.)
Assertion
Ref Expression
nnmulcl  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )

Proof of Theorem nnmulcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5642 . . . . 5  |-  ( x  =  1  ->  ( A  x.  x )  =  ( A  x.  1 ) )
21eleq1d 2156 . . . 4  |-  ( x  =  1  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  1 )  e.  NN ) )
32imbi2d 228 . . 3  |-  ( x  =  1  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  1 )  e.  NN ) ) )
4 oveq2 5642 . . . . 5  |-  ( x  =  y  ->  ( A  x.  x )  =  ( A  x.  y ) )
54eleq1d 2156 . . . 4  |-  ( x  =  y  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  y )  e.  NN ) )
65imbi2d 228 . . 3  |-  ( x  =  y  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  y
)  e.  NN ) ) )
7 oveq2 5642 . . . . 5  |-  ( x  =  ( y  +  1 )  ->  ( A  x.  x )  =  ( A  x.  ( y  +  1 ) ) )
87eleq1d 2156 . . . 4  |-  ( x  =  ( y  +  1 )  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  ( y  +  1 ) )  e.  NN ) )
98imbi2d 228 . . 3  |-  ( x  =  ( y  +  1 )  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  (
y  +  1 ) )  e.  NN ) ) )
10 oveq2 5642 . . . . 5  |-  ( x  =  B  ->  ( A  x.  x )  =  ( A  x.  B ) )
1110eleq1d 2156 . . . 4  |-  ( x  =  B  ->  (
( A  x.  x
)  e.  NN  <->  ( A  x.  B )  e.  NN ) )
1211imbi2d 228 . . 3  |-  ( x  =  B  ->  (
( A  e.  NN  ->  ( A  x.  x
)  e.  NN )  <-> 
( A  e.  NN  ->  ( A  x.  B
)  e.  NN ) ) )
13 nncn 8402 . . . 4  |-  ( A  e.  NN  ->  A  e.  CC )
14 mulid1 7464 . . . . . 6  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
1514eleq1d 2156 . . . . 5  |-  ( A  e.  CC  ->  (
( A  x.  1 )  e.  NN  <->  A  e.  NN ) )
1615biimprd 156 . . . 4  |-  ( A  e.  CC  ->  ( A  e.  NN  ->  ( A  x.  1 )  e.  NN ) )
1713, 16mpcom 36 . . 3  |-  ( A  e.  NN  ->  ( A  x.  1 )  e.  NN )
18 nnaddcl 8414 . . . . . . . 8  |-  ( ( ( A  x.  y
)  e.  NN  /\  A  e.  NN )  ->  ( ( A  x.  y )  +  A
)  e.  NN )
1918ancoms 264 . . . . . . 7  |-  ( ( A  e.  NN  /\  ( A  x.  y
)  e.  NN )  ->  ( ( A  x.  y )  +  A )  e.  NN )
20 nncn 8402 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  CC )
21 ax-1cn 7417 . . . . . . . . . . 11  |-  1  e.  CC
22 adddi 7453 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( y  +  1 ) )  =  ( ( A  x.  y )  +  ( A  x.  1 ) ) )
2321, 22mp3an3 1262 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  ( A  x.  1 ) ) )
2414oveq2d 5650 . . . . . . . . . . 11  |-  ( A  e.  CC  ->  (
( A  x.  y
)  +  ( A  x.  1 ) )  =  ( ( A  x.  y )  +  A ) )
2524adantr 270 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( ( A  x.  y )  +  ( A  x.  1 ) )  =  ( ( A  x.  y )  +  A ) )
2623, 25eqtrd 2120 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  A ) )
2713, 20, 26syl2an 283 . . . . . . . 8  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( A  x.  (
y  +  1 ) )  =  ( ( A  x.  y )  +  A ) )
2827eleq1d 2156 . . . . . . 7  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  x.  ( y  +  1 ) )  e.  NN  <->  ( ( A  x.  y
)  +  A )  e.  NN ) )
2919, 28syl5ibr 154 . . . . . 6  |-  ( ( A  e.  NN  /\  y  e.  NN )  ->  ( ( A  e.  NN  /\  ( A  x.  y )  e.  NN )  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) )
3029exp4b 359 . . . . 5  |-  ( A  e.  NN  ->  (
y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  x.  y
)  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) ) )
3130pm2.43b 51 . . . 4  |-  ( y  e.  NN  ->  ( A  e.  NN  ->  ( ( A  x.  y
)  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) )
3231a2d 26 . . 3  |-  ( y  e.  NN  ->  (
( A  e.  NN  ->  ( A  x.  y
)  e.  NN )  ->  ( A  e.  NN  ->  ( A  x.  ( y  +  1 ) )  e.  NN ) ) )
333, 6, 9, 12, 17, 32nnind 8410 . 2  |-  ( B  e.  NN  ->  ( A  e.  NN  ->  ( A  x.  B )  e.  NN ) )
3433impcom 123 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( A  x.  B
)  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438  (class class class)co 5634   CCcc 7327   1c1 7330    + caddc 7332    x. cmul 7334   NNcn 8394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-1rid 7431  ax-cnre 7435
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637  df-inn 8395
This theorem is referenced by:  nnmulcli  8416  nndivtr  8435  nnmulcld  8442  nn0mulcl  8679  qaddcl  9089  qmulcl  9091  modqmulnn  9714  nnexpcl  9933  nnsqcl  9989  faccl  10108  facdiv  10111  faclbnd3  10116  bcrpcl  10126  trirecip  10856  lcmgcdlem  11141  lcmgcdnn  11146
  Copyright terms: Public domain W3C validator