Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnmulcl | Unicode version |
Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
Ref | Expression |
---|---|
nnmulcl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5850 | . . . . 5 | |
2 | 1 | eleq1d 2235 | . . . 4 |
3 | 2 | imbi2d 229 | . . 3 |
4 | oveq2 5850 | . . . . 5 | |
5 | 4 | eleq1d 2235 | . . . 4 |
6 | 5 | imbi2d 229 | . . 3 |
7 | oveq2 5850 | . . . . 5 | |
8 | 7 | eleq1d 2235 | . . . 4 |
9 | 8 | imbi2d 229 | . . 3 |
10 | oveq2 5850 | . . . . 5 | |
11 | 10 | eleq1d 2235 | . . . 4 |
12 | 11 | imbi2d 229 | . . 3 |
13 | nncn 8865 | . . . 4 | |
14 | mulid1 7896 | . . . . . 6 | |
15 | 14 | eleq1d 2235 | . . . . 5 |
16 | 15 | biimprd 157 | . . . 4 |
17 | 13, 16 | mpcom 36 | . . 3 |
18 | nnaddcl 8877 | . . . . . . . 8 | |
19 | 18 | ancoms 266 | . . . . . . 7 |
20 | nncn 8865 | . . . . . . . . 9 | |
21 | ax-1cn 7846 | . . . . . . . . . . 11 | |
22 | adddi 7885 | . . . . . . . . . . 11 | |
23 | 21, 22 | mp3an3 1316 | . . . . . . . . . 10 |
24 | 14 | oveq2d 5858 | . . . . . . . . . . 11 |
25 | 24 | adantr 274 | . . . . . . . . . 10 |
26 | 23, 25 | eqtrd 2198 | . . . . . . . . 9 |
27 | 13, 20, 26 | syl2an 287 | . . . . . . . 8 |
28 | 27 | eleq1d 2235 | . . . . . . 7 |
29 | 19, 28 | syl5ibr 155 | . . . . . 6 |
30 | 29 | exp4b 365 | . . . . 5 |
31 | 30 | pm2.43b 52 | . . . 4 |
32 | 31 | a2d 26 | . . 3 |
33 | 3, 6, 9, 12, 17, 32 | nnind 8873 | . 2 |
34 | 33 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 c1 7754 caddc 7756 cmul 7758 cn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 |
This theorem is referenced by: nnmulcli 8879 nndivtr 8899 nnmulcld 8906 nn0mulcl 9150 qaddcl 9573 qmulcl 9575 modqmulnn 10277 nnexpcl 10468 nnsqcl 10524 faccl 10648 facdiv 10651 faclbnd3 10656 bcrpcl 10666 trirecip 11442 fprodnncl 11551 lcmgcdlem 12009 lcmgcdnn 12014 pcmptcl 12272 pcmpt 12273 |
Copyright terms: Public domain | W3C validator |