| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnmulcl | Unicode version | ||
| Description: Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.) |
| Ref | Expression |
|---|---|
| nnmulcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 |
. . . . 5
| |
| 2 | 1 | eleq1d 2276 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 5975 |
. . . . 5
| |
| 5 | 4 | eleq1d 2276 |
. . . 4
|
| 6 | 5 | imbi2d 230 |
. . 3
|
| 7 | oveq2 5975 |
. . . . 5
| |
| 8 | 7 | eleq1d 2276 |
. . . 4
|
| 9 | 8 | imbi2d 230 |
. . 3
|
| 10 | oveq2 5975 |
. . . . 5
| |
| 11 | 10 | eleq1d 2276 |
. . . 4
|
| 12 | 11 | imbi2d 230 |
. . 3
|
| 13 | nncn 9079 |
. . . 4
| |
| 14 | mulrid 8104 |
. . . . . 6
| |
| 15 | 14 | eleq1d 2276 |
. . . . 5
|
| 16 | 15 | biimprd 158 |
. . . 4
|
| 17 | 13, 16 | mpcom 36 |
. . 3
|
| 18 | nnaddcl 9091 |
. . . . . . . 8
| |
| 19 | 18 | ancoms 268 |
. . . . . . 7
|
| 20 | nncn 9079 |
. . . . . . . . 9
| |
| 21 | ax-1cn 8053 |
. . . . . . . . . . 11
| |
| 22 | adddi 8092 |
. . . . . . . . . . 11
| |
| 23 | 21, 22 | mp3an3 1339 |
. . . . . . . . . 10
|
| 24 | 14 | oveq2d 5983 |
. . . . . . . . . . 11
|
| 25 | 24 | adantr 276 |
. . . . . . . . . 10
|
| 26 | 23, 25 | eqtrd 2240 |
. . . . . . . . 9
|
| 27 | 13, 20, 26 | syl2an 289 |
. . . . . . . 8
|
| 28 | 27 | eleq1d 2276 |
. . . . . . 7
|
| 29 | 19, 28 | imbitrrid 156 |
. . . . . 6
|
| 30 | 29 | exp4b 367 |
. . . . 5
|
| 31 | 30 | pm2.43b 52 |
. . . 4
|
| 32 | 31 | a2d 26 |
. . 3
|
| 33 | 3, 6, 9, 12, 17, 32 | nnind 9087 |
. 2
|
| 34 | 33 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-1rid 8067 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 |
| This theorem is referenced by: nnmulcli 9093 nndivtr 9113 nnmulcld 9120 nn0mulcl 9366 qaddcl 9791 qmulcl 9793 modqmulnn 10524 nnexpcl 10734 nnsqcl 10791 faccl 10917 facdiv 10920 faclbnd3 10925 bcrpcl 10935 trirecip 11927 fprodnncl 12036 lcmgcdlem 12514 lcmgcdnn 12519 pcmptcl 12780 pcmpt 12781 4sqlem12 12840 mulgnnass 13608 lgseisenlem1 15662 lgseisenlem2 15663 lgseisenlem3 15664 lgseisenlem4 15665 lgsquadlem1 15669 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |