Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mulnqpru | Unicode version |
Description: Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.) |
Ref | Expression |
---|---|
mulnqpru |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltmnqg 7336 | . . . . . . 7 | |
2 | 1 | adantl 275 | . . . . . 6 |
3 | prop 7410 | . . . . . . . . 9 | |
4 | elprnqu 7417 | . . . . . . . . 9 | |
5 | 3, 4 | sylan 281 | . . . . . . . 8 |
6 | 5 | ad2antrr 480 | . . . . . . 7 |
7 | prop 7410 | . . . . . . . . 9 | |
8 | elprnqu 7417 | . . . . . . . . 9 | |
9 | 7, 8 | sylan 281 | . . . . . . . 8 |
10 | 9 | ad2antlr 481 | . . . . . . 7 |
11 | mulclnq 7311 | . . . . . . 7 | |
12 | 6, 10, 11 | syl2anc 409 | . . . . . 6 |
13 | simpr 109 | . . . . . 6 | |
14 | recclnq 7327 | . . . . . . 7 | |
15 | 10, 14 | syl 14 | . . . . . 6 |
16 | mulcomnqg 7318 | . . . . . . 7 | |
17 | 16 | adantl 275 | . . . . . 6 |
18 | 2, 12, 13, 15, 17 | caovord2d 6005 | . . . . 5 |
19 | mulassnqg 7319 | . . . . . . . 8 | |
20 | 6, 10, 15, 19 | syl3anc 1227 | . . . . . . 7 |
21 | recidnq 7328 | . . . . . . . . 9 | |
22 | 21 | oveq2d 5855 | . . . . . . . 8 |
23 | 10, 22 | syl 14 | . . . . . . 7 |
24 | mulidnq 7324 | . . . . . . . 8 | |
25 | 6, 24 | syl 14 | . . . . . . 7 |
26 | 20, 23, 25 | 3eqtrd 2201 | . . . . . 6 |
27 | 26 | breq1d 3989 | . . . . 5 |
28 | 18, 27 | bitrd 187 | . . . 4 |
29 | prcunqu 7420 | . . . . . 6 | |
30 | 3, 29 | sylan 281 | . . . . 5 |
31 | 30 | ad2antrr 480 | . . . 4 |
32 | 28, 31 | sylbid 149 | . . 3 |
33 | df-imp 7404 | . . . . . . . . 9 | |
34 | mulclnq 7311 | . . . . . . . . 9 | |
35 | 33, 34 | genppreclu 7450 | . . . . . . . 8 |
36 | 35 | exp4b 365 | . . . . . . 7 |
37 | 36 | com34 83 | . . . . . 6 |
38 | 37 | imp32 255 | . . . . 5 |
39 | 38 | adantlr 469 | . . . 4 |
40 | 39 | adantr 274 | . . 3 |
41 | 32, 40 | syld 45 | . 2 |
42 | mulassnqg 7319 | . . . . 5 | |
43 | 13, 15, 10, 42 | syl3anc 1227 | . . . 4 |
44 | mulcomnqg 7318 | . . . . . . 7 | |
45 | 15, 10, 44 | syl2anc 409 | . . . . . 6 |
46 | 10, 21 | syl 14 | . . . . . 6 |
47 | 45, 46 | eqtrd 2197 | . . . . 5 |
48 | 47 | oveq2d 5855 | . . . 4 |
49 | mulidnq 7324 | . . . . 5 | |
50 | 49 | adantl 275 | . . . 4 |
51 | 43, 48, 50 | 3eqtrd 2201 | . . 3 |
52 | 51 | eleq1d 2233 | . 2 |
53 | 41, 52 | sylibd 148 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 967 wceq 1342 wcel 2135 cop 3576 class class class wbr 3979 cfv 5185 (class class class)co 5839 c1st 6101 c2nd 6102 cnq 7215 c1q 7216 cmq 7218 crq 7219 cltq 7220 cnp 7226 cmp 7229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-13 2137 ax-14 2138 ax-ext 2146 ax-coll 4094 ax-sep 4097 ax-nul 4105 ax-pow 4150 ax-pr 4184 ax-un 4408 ax-setind 4511 ax-iinf 4562 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 968 df-3an 969 df-tru 1345 df-fal 1348 df-nf 1448 df-sb 1750 df-eu 2016 df-mo 2017 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-ne 2335 df-ral 2447 df-rex 2448 df-reu 2449 df-rab 2451 df-v 2726 df-sbc 2950 df-csb 3044 df-dif 3116 df-un 3118 df-in 3120 df-ss 3127 df-nul 3408 df-pw 3558 df-sn 3579 df-pr 3580 df-op 3582 df-uni 3787 df-int 3822 df-iun 3865 df-br 3980 df-opab 4041 df-mpt 4042 df-tr 4078 df-eprel 4264 df-id 4268 df-iord 4341 df-on 4343 df-suc 4346 df-iom 4565 df-xp 4607 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-res 4613 df-ima 4614 df-iota 5150 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 df-fv 5193 df-ov 5842 df-oprab 5843 df-mpo 5844 df-1st 6103 df-2nd 6104 df-recs 6267 df-irdg 6332 df-1o 6378 df-oadd 6382 df-omul 6383 df-er 6495 df-ec 6497 df-qs 6501 df-ni 7239 df-mi 7241 df-lti 7242 df-mpq 7280 df-enq 7282 df-nqqs 7283 df-mqqs 7285 df-1nqqs 7286 df-rq 7287 df-ltnqqs 7288 df-inp 7401 df-imp 7404 |
This theorem is referenced by: mullocprlem 7505 mulclpr 7507 |
Copyright terms: Public domain | W3C validator |