ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqpru Unicode version

Theorem mulnqpru 7126
Description: Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
Assertion
Ref Expression
mulnqpru  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X  ->  X  e.  ( 2nd `  ( A  .P.  B
) ) ) )

Proof of Theorem mulnqpru
Dummy variables  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 6958 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
21adantl 271 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A
) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
3 prop 7032 . . . . . . . . 9  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
4 elprnqu 7039 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 2nd `  A ) )  ->  G  e.  Q. )
53, 4sylan 277 . . . . . . . 8  |-  ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  ->  G  e.  Q. )
65ad2antrr 472 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  G  e.  Q. )
7 prop 7032 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
8 elprnqu 7039 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 2nd `  B ) )  ->  H  e.  Q. )
97, 8sylan 277 . . . . . . . 8  |-  ( ( B  e.  P.  /\  H  e.  ( 2nd `  B ) )  ->  H  e.  Q. )
109ad2antlr 473 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  H  e.  Q. )
11 mulclnq 6933 . . . . . . 7  |-  ( ( G  e.  Q.  /\  H  e.  Q. )  ->  ( G  .Q  H
)  e.  Q. )
126, 10, 11syl2anc 403 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( G  .Q  H
)  e.  Q. )
13 simpr 108 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  X  e.  Q. )
14 recclnq 6949 . . . . . . 7  |-  ( H  e.  Q.  ->  ( *Q `  H )  e. 
Q. )
1510, 14syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( *Q `  H
)  e.  Q. )
16 mulcomnqg 6940 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
1716adantl 271 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A
) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
182, 12, 13, 15, 17caovord2d 5814 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X  <->  ( ( G  .Q  H )  .Q  ( *Q `  H
) )  <Q  ( X  .Q  ( *Q `  H ) ) ) )
19 mulassnqg 6941 . . . . . . . 8  |-  ( ( G  e.  Q.  /\  H  e.  Q.  /\  ( *Q `  H )  e. 
Q. )  ->  (
( G  .Q  H
)  .Q  ( *Q
`  H ) )  =  ( G  .Q  ( H  .Q  ( *Q `  H ) ) ) )
206, 10, 15, 19syl3anc 1174 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  .Q  ( *Q `  H ) )  =  ( G  .Q  ( H  .Q  ( *Q `  H ) ) ) )
21 recidnq 6950 . . . . . . . . 9  |-  ( H  e.  Q.  ->  ( H  .Q  ( *Q `  H ) )  =  1Q )
2221oveq2d 5668 . . . . . . . 8  |-  ( H  e.  Q.  ->  ( G  .Q  ( H  .Q  ( *Q `  H ) ) )  =  ( G  .Q  1Q ) )
2310, 22syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( G  .Q  ( H  .Q  ( *Q `  H ) ) )  =  ( G  .Q  1Q ) )
24 mulidnq 6946 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( G  .Q  1Q )  =  G )
256, 24syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( G  .Q  1Q )  =  G )
2620, 23, 253eqtrd 2124 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  .Q  ( *Q `  H ) )  =  G )
2726breq1d 3855 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( G  .Q  H )  .Q  ( *Q `  H
) )  <Q  ( X  .Q  ( *Q `  H ) )  <->  G  <Q  ( X  .Q  ( *Q
`  H ) ) ) )
2818, 27bitrd 186 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X  <->  G  <Q  ( X  .Q  ( *Q
`  H ) ) ) )
29 prcunqu 7042 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 2nd `  A ) )  -> 
( G  <Q  ( X  .Q  ( *Q `  H ) )  -> 
( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A
) ) )
303, 29sylan 277 . . . . 5  |-  ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  -> 
( G  <Q  ( X  .Q  ( *Q `  H ) )  -> 
( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A
) ) )
3130ad2antrr 472 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( G  <Q  ( X  .Q  ( *Q `  H ) )  -> 
( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A
) ) )
3228, 31sylbid 148 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X  -> 
( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A
) ) )
33 df-imp 7026 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y  .Q  z
) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y  .Q  z
) ) } >. )
34 mulclnq 6933 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
3533, 34genppreclu 7072 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A
)  /\  H  e.  ( 2nd `  B ) )  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3635exp4b 359 . . . . . . 7  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A
)  ->  ( H  e.  ( 2nd `  B
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) )
3736com34 82 . . . . . 6  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( H  e.  ( 2nd `  B )  ->  (
( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 2nd `  ( A  .P.  B ) ) ) ) ) )
3837imp32 253 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) )  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
3938adantlr 461 . . . 4  |-  ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) )  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
4039adantr 270 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 2nd `  A )  ->  (
( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
4132, 40syld 44 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X  -> 
( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 2nd `  ( A  .P.  B ) ) ) )
42 mulassnqg 6941 . . . . 5  |-  ( ( X  e.  Q.  /\  ( *Q `  H )  e.  Q.  /\  H  e.  Q. )  ->  (
( X  .Q  ( *Q `  H ) )  .Q  H )  =  ( X  .Q  (
( *Q `  H
)  .Q  H ) ) )
4313, 15, 10, 42syl3anc 1174 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  =  ( X  .Q  ( ( *Q `  H )  .Q  H
) ) )
44 mulcomnqg 6940 . . . . . . 7  |-  ( ( ( *Q `  H
)  e.  Q.  /\  H  e.  Q. )  ->  ( ( *Q `  H )  .Q  H
)  =  ( H  .Q  ( *Q `  H ) ) )
4515, 10, 44syl2anc 403 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  H )  .Q  H
)  =  ( H  .Q  ( *Q `  H ) ) )
4610, 21syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( H  .Q  ( *Q `  H ) )  =  1Q )
4745, 46eqtrd 2120 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  H )  .Q  H
)  =  1Q )
4847oveq2d 5668 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  H
)  .Q  H ) )  =  ( X  .Q  1Q ) )
49 mulidnq 6946 . . . . 5  |-  ( X  e.  Q.  ->  ( X  .Q  1Q )  =  X )
5049adantl 271 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  1Q )  =  X )
5143, 48, 503eqtrd 2124 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  =  X )
5251eleq1d 2156 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 2nd `  ( A  .P.  B ) )  <-> 
X  e.  ( 2nd `  ( A  .P.  B
) ) ) )
5341, 52sylibd 147 1  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X  ->  X  e.  ( 2nd `  ( A  .P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    = wceq 1289    e. wcel 1438   <.cop 3449   class class class wbr 3845   ` cfv 5015  (class class class)co 5652   1stc1st 5909   2ndc2nd 5910   Q.cnq 6837   1Qc1q 6838    .Q cmq 6840   *Qcrq 6841    <Q cltq 6842   P.cnp 6848    .P. cmp 6851
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-eprel 4116  df-id 4120  df-iord 4193  df-on 4195  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-1o 6181  df-oadd 6185  df-omul 6186  df-er 6290  df-ec 6292  df-qs 6296  df-ni 6861  df-mi 6863  df-lti 6864  df-mpq 6902  df-enq 6904  df-nqqs 6905  df-mqqs 6907  df-1nqqs 6908  df-rq 6909  df-ltnqqs 6910  df-inp 7023  df-imp 7026
This theorem is referenced by:  mullocprlem  7127  mulclpr  7129
  Copyright terms: Public domain W3C validator