Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > distrlem5prl | Unicode version |
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
Ref | Expression |
---|---|
distrlem5prl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulclpr 7471 | . . . . 5 | |
2 | 1 | 3adant3 1002 | . . . 4 |
3 | mulclpr 7471 | . . . . 5 | |
4 | 3 | 3adant2 1001 | . . . 4 |
5 | df-iplp 7367 | . . . . 5 | |
6 | addclnq 7274 | . . . . 5 | |
7 | 5, 6 | genpelvl 7411 | . . . 4 |
8 | 2, 4, 7 | syl2anc 409 | . . 3 |
9 | df-imp 7368 | . . . . . . . 8 | |
10 | mulclnq 7275 | . . . . . . . 8 | |
11 | 9, 10 | genpelvl 7411 | . . . . . . 7 |
12 | 11 | 3adant2 1001 | . . . . . 6 |
13 | 12 | anbi2d 460 | . . . . 5 |
14 | df-imp 7368 | . . . . . . . . 9 | |
15 | 14, 10 | genpelvl 7411 | . . . . . . . 8 |
16 | 15 | 3adant3 1002 | . . . . . . 7 |
17 | distrlem4prl 7483 | . . . . . . . . . . . . . . 15 | |
18 | oveq12 5823 | . . . . . . . . . . . . . . . . . 18 | |
19 | 18 | eqeq2d 2166 | . . . . . . . . . . . . . . . . 17 |
20 | eleq1 2217 | . . . . . . . . . . . . . . . . 17 | |
21 | 19, 20 | syl6bi 162 | . . . . . . . . . . . . . . . 16 |
22 | 21 | imp 123 | . . . . . . . . . . . . . . 15 |
23 | 17, 22 | syl5ibrcom 156 | . . . . . . . . . . . . . 14 |
24 | 23 | exp4b 365 | . . . . . . . . . . . . 13 |
25 | 24 | com3l 81 | . . . . . . . . . . . 12 |
26 | 25 | exp4b 365 | . . . . . . . . . . 11 |
27 | 26 | com23 78 | . . . . . . . . . 10 |
28 | 27 | rexlimivv 2577 | . . . . . . . . 9 |
29 | 28 | rexlimdvv 2578 | . . . . . . . 8 |
30 | 29 | com3r 79 | . . . . . . 7 |
31 | 16, 30 | sylbid 149 | . . . . . 6 |
32 | 31 | impd 252 | . . . . 5 |
33 | 13, 32 | sylbid 149 | . . . 4 |
34 | 33 | rexlimdvv 2578 | . . 3 |
35 | 8, 34 | sylbid 149 | . 2 |
36 | 35 | ssrdv 3130 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1332 wcel 2125 wrex 2433 wss 3098 cfv 5163 (class class class)co 5814 c1st 6076 cplq 7181 cmq 7182 cnp 7190 cpp 7192 cmp 7193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-eprel 4244 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-irdg 6307 df-1o 6353 df-2o 6354 df-oadd 6357 df-omul 6358 df-er 6469 df-ec 6471 df-qs 6475 df-ni 7203 df-pli 7204 df-mi 7205 df-lti 7206 df-plpq 7243 df-mpq 7244 df-enq 7246 df-nqqs 7247 df-plqqs 7248 df-mqqs 7249 df-1nqqs 7250 df-rq 7251 df-ltnqqs 7252 df-enq0 7323 df-nq0 7324 df-0nq0 7325 df-plq0 7326 df-mq0 7327 df-inp 7365 df-iplp 7367 df-imp 7368 |
This theorem is referenced by: distrprg 7487 |
Copyright terms: Public domain | W3C validator |