ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5prl Unicode version

Theorem distrlem5prl 7548
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5prl  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )

Proof of Theorem distrlem5prl
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7534 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
213adant3 1012 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
3 mulclpr 7534 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
433adant2 1011 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
5 df-iplp 7430 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
6 addclnq 7337 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
75, 6genpelvl 7474 . . . 4  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
82, 4, 7syl2anc 409 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
9 df-imp 7431 . . . . . . . 8  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  x  =  ( g  .Q  h
) ) } ,  { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  x  =  ( g  .Q  h
) ) } >. )
10 mulclnq 7338 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
119, 10genpelvl 7474 . . . . . . 7  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( u  e.  ( 1st `  ( A  .P.  C ) )  <->  E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C ) u  =  ( f  .Q  z
) ) )
12113adant2 1011 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
u  e.  ( 1st `  ( A  .P.  C
) )  <->  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) ) )
1312anbi2d 461 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  u  e.  ( 1st `  ( A  .P.  C ) ) )  <->  ( v  e.  ( 1st `  ( A  .P.  B ) )  /\  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) ) ) )
14 df-imp 7431 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  f  =  ( g  .Q  h
) ) } >. )
1514, 10genpelvl 7474 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( v  e.  ( 1st `  ( A  .P.  B ) )  <->  E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) v  =  ( x  .Q  y
) ) )
16153adant3 1012 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( A  .P.  B
) )  <->  E. x  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y ) ) )
17 distrlem4prl 7546 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
18 oveq12 5862 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( v  +Q  u
)  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
1918eqeq2d 2182 . . . . . . . . . . . . . . . . 17  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  <-> 
w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
20 eleq1 2233 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2119, 20syl6bi 162 . . . . . . . . . . . . . . . 16  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  ->  ( w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
2221imp 123 . . . . . . . . . . . . . . 15  |-  ( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u
) )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2317, 22syl5ibrcom 156 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u ) )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2423exp4b 365 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2524com3l 81 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2625exp4b 365 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B
) )  ->  (
( f  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) )  ->  ( v  =  ( x  .Q  y )  ->  (
u  =  ( f  .Q  z )  -> 
( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2726com23 78 . . . . . . . . . 10  |-  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B
) )  ->  (
v  =  ( x  .Q  y )  -> 
( ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2827rexlimivv 2593 . . . . . . . . 9  |-  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y )  ->  ( ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) )
2928rexlimdvv 2594 . . . . . . . 8  |-  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y )  ->  ( E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3029com3r 79 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) v  =  ( x  .Q  y
)  ->  ( E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3116, 30sylbid 149 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( A  .P.  B
) )  ->  ( E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C ) u  =  ( f  .Q  z
)  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3231impd 252 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3313, 32sylbid 149 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  u  e.  ( 1st `  ( A  .P.  C ) ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3433rexlimdvv 2594 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
358, 34sylbid 149 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
3635ssrdv 3153 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   E.wrex 2449    C_ wss 3121   ` cfv 5198  (class class class)co 5853   1stc1st 6117    +Q cplq 7244    .Q cmq 7245   P.cnp 7253    +P. cpp 7255    .P. cmp 7256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-eprel 4274  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-irdg 6349  df-1o 6395  df-2o 6396  df-oadd 6399  df-omul 6400  df-er 6513  df-ec 6515  df-qs 6519  df-ni 7266  df-pli 7267  df-mi 7268  df-lti 7269  df-plpq 7306  df-mpq 7307  df-enq 7309  df-nqqs 7310  df-plqqs 7311  df-mqqs 7312  df-1nqqs 7313  df-rq 7314  df-ltnqqs 7315  df-enq0 7386  df-nq0 7387  df-0nq0 7388  df-plq0 7389  df-mq0 7390  df-inp 7428  df-iplp 7430  df-imp 7431
This theorem is referenced by:  distrprg  7550
  Copyright terms: Public domain W3C validator