| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > distrlem5prl | Unicode version | ||
| Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| distrlem5prl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulclpr 7687 |
. . . . 5
| |
| 2 | 1 | 3adant3 1020 |
. . . 4
|
| 3 | mulclpr 7687 |
. . . . 5
| |
| 4 | 3 | 3adant2 1019 |
. . . 4
|
| 5 | df-iplp 7583 |
. . . . 5
| |
| 6 | addclnq 7490 |
. . . . 5
| |
| 7 | 5, 6 | genpelvl 7627 |
. . . 4
|
| 8 | 2, 4, 7 | syl2anc 411 |
. . 3
|
| 9 | df-imp 7584 |
. . . . . . . 8
| |
| 10 | mulclnq 7491 |
. . . . . . . 8
| |
| 11 | 9, 10 | genpelvl 7627 |
. . . . . . 7
|
| 12 | 11 | 3adant2 1019 |
. . . . . 6
|
| 13 | 12 | anbi2d 464 |
. . . . 5
|
| 14 | df-imp 7584 |
. . . . . . . . 9
| |
| 15 | 14, 10 | genpelvl 7627 |
. . . . . . . 8
|
| 16 | 15 | 3adant3 1020 |
. . . . . . 7
|
| 17 | distrlem4prl 7699 |
. . . . . . . . . . . . . . 15
| |
| 18 | oveq12 5955 |
. . . . . . . . . . . . . . . . . 18
| |
| 19 | 18 | eqeq2d 2217 |
. . . . . . . . . . . . . . . . 17
|
| 20 | eleq1 2268 |
. . . . . . . . . . . . . . . . 17
| |
| 21 | 19, 20 | biimtrdi 163 |
. . . . . . . . . . . . . . . 16
|
| 22 | 21 | imp 124 |
. . . . . . . . . . . . . . 15
|
| 23 | 17, 22 | syl5ibrcom 157 |
. . . . . . . . . . . . . 14
|
| 24 | 23 | exp4b 367 |
. . . . . . . . . . . . 13
|
| 25 | 24 | com3l 81 |
. . . . . . . . . . . 12
|
| 26 | 25 | exp4b 367 |
. . . . . . . . . . 11
|
| 27 | 26 | com23 78 |
. . . . . . . . . 10
|
| 28 | 27 | rexlimivv 2629 |
. . . . . . . . 9
|
| 29 | 28 | rexlimdvv 2630 |
. . . . . . . 8
|
| 30 | 29 | com3r 79 |
. . . . . . 7
|
| 31 | 16, 30 | sylbid 150 |
. . . . . 6
|
| 32 | 31 | impd 254 |
. . . . 5
|
| 33 | 13, 32 | sylbid 150 |
. . . 4
|
| 34 | 33 | rexlimdvv 2630 |
. . 3
|
| 35 | 8, 34 | sylbid 150 |
. 2
|
| 36 | 35 | ssrdv 3199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-eprel 4337 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-1o 6504 df-2o 6505 df-oadd 6508 df-omul 6509 df-er 6622 df-ec 6624 df-qs 6628 df-ni 7419 df-pli 7420 df-mi 7421 df-lti 7422 df-plpq 7459 df-mpq 7460 df-enq 7462 df-nqqs 7463 df-plqqs 7464 df-mqqs 7465 df-1nqqs 7466 df-rq 7467 df-ltnqqs 7468 df-enq0 7539 df-nq0 7540 df-0nq0 7541 df-plq0 7542 df-mq0 7543 df-inp 7581 df-iplp 7583 df-imp 7584 |
| This theorem is referenced by: distrprg 7703 |
| Copyright terms: Public domain | W3C validator |