ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5prl Unicode version

Theorem distrlem5prl 7734
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5prl  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )

Proof of Theorem distrlem5prl
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7720 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
213adant3 1020 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
3 mulclpr 7720 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
433adant2 1019 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
5 df-iplp 7616 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
6 addclnq 7523 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
75, 6genpelvl 7660 . . . 4  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
82, 4, 7syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
9 df-imp 7617 . . . . . . . 8  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  x  =  ( g  .Q  h
) ) } ,  { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  x  =  ( g  .Q  h
) ) } >. )
10 mulclnq 7524 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
119, 10genpelvl 7660 . . . . . . 7  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( u  e.  ( 1st `  ( A  .P.  C ) )  <->  E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C ) u  =  ( f  .Q  z
) ) )
12113adant2 1019 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
u  e.  ( 1st `  ( A  .P.  C
) )  <->  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) ) )
1312anbi2d 464 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  u  e.  ( 1st `  ( A  .P.  C ) ) )  <->  ( v  e.  ( 1st `  ( A  .P.  B ) )  /\  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) ) ) )
14 df-imp 7617 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  f  =  ( g  .Q  h
) ) } >. )
1514, 10genpelvl 7660 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( v  e.  ( 1st `  ( A  .P.  B ) )  <->  E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) v  =  ( x  .Q  y
) ) )
16153adant3 1020 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( A  .P.  B
) )  <->  E. x  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y ) ) )
17 distrlem4prl 7732 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
18 oveq12 5976 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( v  +Q  u
)  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
1918eqeq2d 2219 . . . . . . . . . . . . . . . . 17  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  <-> 
w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
20 eleq1 2270 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2119, 20biimtrdi 163 . . . . . . . . . . . . . . . 16  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  ->  ( w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
2221imp 124 . . . . . . . . . . . . . . 15  |-  ( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u
) )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2317, 22syl5ibrcom 157 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u ) )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2423exp4b 367 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2524com3l 81 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2625exp4b 367 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B
) )  ->  (
( f  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) )  ->  ( v  =  ( x  .Q  y )  ->  (
u  =  ( f  .Q  z )  -> 
( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2726com23 78 . . . . . . . . . 10  |-  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B
) )  ->  (
v  =  ( x  .Q  y )  -> 
( ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2827rexlimivv 2631 . . . . . . . . 9  |-  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y )  ->  ( ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) )
2928rexlimdvv 2632 . . . . . . . 8  |-  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y )  ->  ( E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3029com3r 79 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) v  =  ( x  .Q  y
)  ->  ( E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3116, 30sylbid 150 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( A  .P.  B
) )  ->  ( E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C ) u  =  ( f  .Q  z
)  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3231impd 254 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3313, 32sylbid 150 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  u  e.  ( 1st `  ( A  .P.  C ) ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3433rexlimdvv 2632 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
358, 34sylbid 150 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
3635ssrdv 3207 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   ` cfv 5290  (class class class)co 5967   1stc1st 6247    +Q cplq 7430    .Q cmq 7431   P.cnp 7439    +P. cpp 7441    .P. cmp 7442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-eprel 4354  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-1o 6525  df-2o 6526  df-oadd 6529  df-omul 6530  df-er 6643  df-ec 6645  df-qs 6649  df-ni 7452  df-pli 7453  df-mi 7454  df-lti 7455  df-plpq 7492  df-mpq 7493  df-enq 7495  df-nqqs 7496  df-plqqs 7497  df-mqqs 7498  df-1nqqs 7499  df-rq 7500  df-ltnqqs 7501  df-enq0 7572  df-nq0 7573  df-0nq0 7574  df-plq0 7575  df-mq0 7576  df-inp 7614  df-iplp 7616  df-imp 7617
This theorem is referenced by:  distrprg  7736
  Copyright terms: Public domain W3C validator