ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5prl Unicode version

Theorem distrlem5prl 7699
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5prl  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )

Proof of Theorem distrlem5prl
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7685 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
213adant3 1020 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
3 mulclpr 7685 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
433adant2 1019 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
5 df-iplp 7581 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
6 addclnq 7488 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
75, 6genpelvl 7625 . . . 4  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
82, 4, 7syl2anc 411 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
9 df-imp 7582 . . . . . . . 8  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  x  =  ( g  .Q  h
) ) } ,  { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  x  =  ( g  .Q  h
) ) } >. )
10 mulclnq 7489 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
119, 10genpelvl 7625 . . . . . . 7  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( u  e.  ( 1st `  ( A  .P.  C ) )  <->  E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C ) u  =  ( f  .Q  z
) ) )
12113adant2 1019 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
u  e.  ( 1st `  ( A  .P.  C
) )  <->  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) ) )
1312anbi2d 464 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  u  e.  ( 1st `  ( A  .P.  C ) ) )  <->  ( v  e.  ( 1st `  ( A  .P.  B ) )  /\  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) ) ) )
14 df-imp 7582 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  f  =  ( g  .Q  h
) ) } >. )
1514, 10genpelvl 7625 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( v  e.  ( 1st `  ( A  .P.  B ) )  <->  E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) v  =  ( x  .Q  y
) ) )
16153adant3 1020 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( A  .P.  B
) )  <->  E. x  e.  ( 1st `  A
) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y ) ) )
17 distrlem4prl 7697 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
18 oveq12 5953 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( v  +Q  u
)  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
1918eqeq2d 2217 . . . . . . . . . . . . . . . . 17  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  <-> 
w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
20 eleq1 2268 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2119, 20biimtrdi 163 . . . . . . . . . . . . . . . 16  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  ->  ( w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
2221imp 124 . . . . . . . . . . . . . . 15  |-  ( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u
) )  ->  (
w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2317, 22syl5ibrcom 157 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) ) )  -> 
( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u ) )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2423exp4b 367 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( x  e.  ( 1st `  A
)  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2524com3l 81 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2625exp4b 367 . . . . . . . . . . 11  |-  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B
) )  ->  (
( f  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) )  ->  ( v  =  ( x  .Q  y )  ->  (
u  =  ( f  .Q  z )  -> 
( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2726com23 78 . . . . . . . . . 10  |-  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B
) )  ->  (
v  =  ( x  .Q  y )  -> 
( ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2827rexlimivv 2629 . . . . . . . . 9  |-  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y )  ->  ( ( f  e.  ( 1st `  A
)  /\  z  e.  ( 1st `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) )
2928rexlimdvv 2630 . . . . . . . 8  |-  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B
) v  =  ( x  .Q  y )  ->  ( E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3029com3r 79 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 1st `  A ) E. y  e.  ( 1st `  B ) v  =  ( x  .Q  y
)  ->  ( E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3116, 30sylbid 150 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 1st `  ( A  .P.  B
) )  ->  ( E. f  e.  ( 1st `  A ) E. z  e.  ( 1st `  C ) u  =  ( f  .Q  z
)  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3231impd 254 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  E. f  e.  ( 1st `  A
) E. z  e.  ( 1st `  C
) u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3313, 32sylbid 150 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 1st `  ( A  .P.  B ) )  /\  u  e.  ( 1st `  ( A  .P.  C ) ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3433rexlimdvv 2630 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. v  e.  ( 1st `  ( A  .P.  B ) ) E. u  e.  ( 1st `  ( A  .P.  C ) ) w  =  ( v  +Q  u )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
358, 34sylbid 150 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  ->  w  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) ) )
3635ssrdv 3199 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   E.wrex 2485    C_ wss 3166   ` cfv 5271  (class class class)co 5944   1stc1st 6224    +Q cplq 7395    .Q cmq 7396   P.cnp 7404    +P. cpp 7406    .P. cmp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-iplp 7581  df-imp 7582
This theorem is referenced by:  distrprg  7701
  Copyright terms: Public domain W3C validator