ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlemss1u Unicode version

Theorem recexprlemss1u 7468
Description: The upper cut of  A  .P.  B is a subset of the upper cut of one. Lemma for recexpr 7470. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
Assertion
Ref Expression
recexprlemss1u  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  C_  ( 2nd `  1P ) )
Distinct variable groups:    x, y, A   
x, B, y

Proof of Theorem recexprlemss1u
Dummy variables  q  z  w  u  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 recexpr.1 . . . . . 6  |-  B  = 
<. { x  |  E. y ( x  <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  {
x  |  E. y
( y  <Q  x  /\  ( *Q `  y
)  e.  ( 1st `  A ) ) }
>.
21recexprlempr 7464 . . . . 5  |-  ( A  e.  P.  ->  B  e.  P. )
3 df-imp 7301 . . . . . 6  |-  .P.  =  ( y  e.  P. ,  w  e.  P.  |->  <. { u  e.  Q.  |  E. f  e.  Q.  E. g  e.  Q.  (
f  e.  ( 1st `  y )  /\  g  e.  ( 1st `  w
)  /\  u  =  ( f  .Q  g
) ) } ,  { u  e.  Q.  |  E. f  e.  Q.  E. g  e.  Q.  (
f  e.  ( 2nd `  y )  /\  g  e.  ( 2nd `  w
)  /\  u  =  ( f  .Q  g
) ) } >. )
4 mulclnq 7208 . . . . . 6  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  .Q  g
)  e.  Q. )
53, 4genpelvu 7345 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( w  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. z  e.  ( 2nd `  A ) E. q  e.  ( 2nd `  B ) w  =  ( z  .Q  q
) ) )
62, 5mpdan 418 . . . 4  |-  ( A  e.  P.  ->  (
w  e.  ( 2nd `  ( A  .P.  B
) )  <->  E. z  e.  ( 2nd `  A
) E. q  e.  ( 2nd `  B
) w  =  ( z  .Q  q ) ) )
71recexprlemelu 7455 . . . . . . . 8  |-  ( q  e.  ( 2nd `  B
)  <->  E. y ( y 
<Q  q  /\  ( *Q `  y )  e.  ( 1st `  A
) ) )
8 ltrelnq 7197 . . . . . . . . . . . . . 14  |-  <Q  C_  ( Q.  X.  Q. )
98brel 4599 . . . . . . . . . . . . 13  |-  ( y 
<Q  q  ->  ( y  e.  Q.  /\  q  e.  Q. ) )
109simpld 111 . . . . . . . . . . . 12  |-  ( y 
<Q  q  ->  y  e. 
Q. )
11 prop 7307 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
12 elprnqu 7314 . . . . . . . . . . . . . . . . . 18  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
z  e.  Q. )
1311, 12sylan 281 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
z  e.  Q. )
14 ltmnqi 7235 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  <Q  q  /\  z  e.  Q. )  ->  ( z  .Q  y
)  <Q  ( z  .Q  q ) )
1514expcom 115 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  Q.  ->  (
y  <Q  q  ->  (
z  .Q  y ) 
<Q  ( z  .Q  q
) ) )
1613, 15syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
( y  <Q  q  ->  ( z  .Q  y
)  <Q  ( z  .Q  q ) ) )
1716adantr 274 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  /\  y  e.  Q. )  ->  ( y  <Q  q  ->  ( z  .Q  y
)  <Q  ( z  .Q  q ) ) )
18 prltlu 7319 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  ( *Q `  y
)  e.  ( 1st `  A )  /\  z  e.  ( 2nd `  A
) )  ->  ( *Q `  y )  <Q 
z )
1911, 18syl3an1 1250 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  P.  /\  ( *Q `  y )  e.  ( 1st `  A
)  /\  z  e.  ( 2nd `  A ) )  ->  ( *Q `  y )  <Q  z
)
20193com23 1188 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A )  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  ( *Q `  y )  <Q 
z )
21203expia 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
( ( *Q `  y )  e.  ( 1st `  A )  ->  ( *Q `  y )  <Q  z
) )
2221adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  /\  y  e.  Q. )  ->  ( ( *Q `  y )  e.  ( 1st `  A )  ->  ( *Q `  y )  <Q  z
) )
23 ltmnqi 7235 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( *Q `  y
)  <Q  z  /\  y  e.  Q. )  ->  (
y  .Q  ( *Q
`  y ) ) 
<Q  ( y  .Q  z
) )
2423expcom 115 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  Q.  ->  (
( *Q `  y
)  <Q  z  ->  (
y  .Q  ( *Q
`  y ) ) 
<Q  ( y  .Q  z
) ) )
2524adantr 274 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( ( *Q `  y )  <Q  z  ->  ( y  .Q  ( *Q `  y ) ) 
<Q  ( y  .Q  z
) ) )
26 recidnq 7225 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  e.  Q.  ->  (
y  .Q  ( *Q
`  y ) )  =  1Q )
2726adantr 274 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  ( *Q `  y ) )  =  1Q )
28 mulcomnqg 7215 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
2927, 28breq12d 3950 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( ( y  .Q  ( *Q `  y
) )  <Q  (
y  .Q  z )  <-> 
1Q  <Q  ( z  .Q  y ) ) )
3025, 29sylibd 148 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( ( *Q `  y )  <Q  z  ->  1Q  <Q  ( z  .Q  y ) ) )
3130ancoms 266 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  Q.  /\  y  e.  Q. )  ->  ( ( *Q `  y )  <Q  z  ->  1Q  <Q  ( z  .Q  y ) ) )
3213, 31sylan 281 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  /\  y  e.  Q. )  ->  ( ( *Q `  y )  <Q  z  ->  1Q  <Q  ( z  .Q  y ) ) )
3322, 32syld 45 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  /\  y  e.  Q. )  ->  ( ( *Q `  y )  e.  ( 1st `  A )  ->  1Q  <Q  (
z  .Q  y ) ) )
3417, 33anim12d 333 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  /\  y  e.  Q. )  ->  ( ( y  <Q 
q  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  ( (
z  .Q  y ) 
<Q  ( z  .Q  q
)  /\  1Q  <Q  ( z  .Q  y ) ) ) )
35 ltsonq 7230 . . . . . . . . . . . . . . . 16  |-  <Q  Or  Q.
3635, 8sotri 4942 . . . . . . . . . . . . . . 15  |-  ( ( 1Q  <Q  ( z  .Q  y )  /\  (
z  .Q  y ) 
<Q  ( z  .Q  q
) )  ->  1Q  <Q  ( z  .Q  q
) )
3736ancoms 266 . . . . . . . . . . . . . 14  |-  ( ( ( z  .Q  y
)  <Q  ( z  .Q  q )  /\  1Q  <Q  ( z  .Q  y
) )  ->  1Q  <Q  ( z  .Q  q
) )
3834, 37syl6 33 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  /\  y  e.  Q. )  ->  ( ( y  <Q 
q  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  1Q  <Q  ( z  .Q  q ) ) )
3938exp4b 365 . . . . . . . . . . . 12  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
( y  e.  Q.  ->  ( y  <Q  q  ->  ( ( *Q `  y )  e.  ( 1st `  A )  ->  1Q  <Q  (
z  .Q  q ) ) ) ) )
4010, 39syl5 32 . . . . . . . . . . 11  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
( y  <Q  q  ->  ( y  <Q  q  ->  ( ( *Q `  y )  e.  ( 1st `  A )  ->  1Q  <Q  (
z  .Q  q ) ) ) ) )
4140pm2.43d 50 . . . . . . . . . 10  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
( y  <Q  q  ->  ( ( *Q `  y )  e.  ( 1st `  A )  ->  1Q  <Q  (
z  .Q  q ) ) ) )
4241impd 252 . . . . . . . . 9  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
( ( y  <Q 
q  /\  ( *Q `  y )  e.  ( 1st `  A ) )  ->  1Q  <Q  ( z  .Q  q ) ) )
4342exlimdv 1792 . . . . . . . 8  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
( E. y ( y  <Q  q  /\  ( *Q `  y )  e.  ( 1st `  A
) )  ->  1Q  <Q  ( z  .Q  q
) ) )
447, 43syl5bi 151 . . . . . . 7  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
( q  e.  ( 2nd `  B )  ->  1Q  <Q  (
z  .Q  q ) ) )
45 breq2 3941 . . . . . . . 8  |-  ( w  =  ( z  .Q  q )  ->  ( 1Q  <Q  w  <->  1Q  <Q  ( z  .Q  q ) ) )
4645biimprcd 159 . . . . . . 7  |-  ( 1Q 
<Q  ( z  .Q  q
)  ->  ( w  =  ( z  .Q  q )  ->  1Q  <Q  w ) )
4744, 46syl6 33 . . . . . 6  |-  ( ( A  e.  P.  /\  z  e.  ( 2nd `  A ) )  -> 
( q  e.  ( 2nd `  B )  ->  ( w  =  ( z  .Q  q
)  ->  1Q  <Q  w ) ) )
4847expimpd 361 . . . . 5  |-  ( A  e.  P.  ->  (
( z  e.  ( 2nd `  A )  /\  q  e.  ( 2nd `  B ) )  ->  ( w  =  ( z  .Q  q )  ->  1Q  <Q  w ) ) )
4948rexlimdvv 2559 . . . 4  |-  ( A  e.  P.  ->  ( E. z  e.  ( 2nd `  A ) E. q  e.  ( 2nd `  B ) w  =  ( z  .Q  q
)  ->  1Q  <Q  w ) )
506, 49sylbid 149 . . 3  |-  ( A  e.  P.  ->  (
w  e.  ( 2nd `  ( A  .P.  B
) )  ->  1Q  <Q  w ) )
51 1pru 7388 . . . 4  |-  ( 2nd `  1P )  =  {
w  |  1Q  <Q  w }
5251abeq2i 2251 . . 3  |-  ( w  e.  ( 2nd `  1P ) 
<->  1Q  <Q  w )
5350, 52syl6ibr 161 . 2  |-  ( A  e.  P.  ->  (
w  e.  ( 2nd `  ( A  .P.  B
) )  ->  w  e.  ( 2nd `  1P ) ) )
5453ssrdv 3108 1  |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) )  C_  ( 2nd `  1P ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332   E.wex 1469    e. wcel 1481   {cab 2126   E.wrex 2418    C_ wss 3076   <.cop 3535   class class class wbr 3937   ` cfv 5131  (class class class)co 5782   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112   1Qc1q 7113    .Q cmq 7115   *Qcrq 7116    <Q cltq 7117   P.cnp 7123   1Pc1p 7124    .P. cmp 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-inp 7298  df-i1p 7299  df-imp 7301
This theorem is referenced by:  recexprlemex  7469
  Copyright terms: Public domain W3C validator