| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulnqprl | Unicode version | ||
| Description: Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.) |
| Ref | Expression |
|---|---|
| mulnqprl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmnqg 7596 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | simpr 110 |
. . . . . 6
| |
| 4 | prop 7670 |
. . . . . . . . 9
| |
| 5 | elprnql 7676 |
. . . . . . . . 9
| |
| 6 | 4, 5 | sylan 283 |
. . . . . . . 8
|
| 7 | 6 | ad2antrr 488 |
. . . . . . 7
|
| 8 | prop 7670 |
. . . . . . . . 9
| |
| 9 | elprnql 7676 |
. . . . . . . . 9
| |
| 10 | 8, 9 | sylan 283 |
. . . . . . . 8
|
| 11 | 10 | ad2antlr 489 |
. . . . . . 7
|
| 12 | mulclnq 7571 |
. . . . . . 7
| |
| 13 | 7, 11, 12 | syl2anc 411 |
. . . . . 6
|
| 14 | recclnq 7587 |
. . . . . . 7
| |
| 15 | 11, 14 | syl 14 |
. . . . . 6
|
| 16 | mulcomnqg 7578 |
. . . . . . 7
| |
| 17 | 16 | adantl 277 |
. . . . . 6
|
| 18 | 2, 3, 13, 15, 17 | caovord2d 6181 |
. . . . 5
|
| 19 | mulassnqg 7579 |
. . . . . . . 8
| |
| 20 | 7, 11, 15, 19 | syl3anc 1271 |
. . . . . . 7
|
| 21 | recidnq 7588 |
. . . . . . . . 9
| |
| 22 | 21 | oveq2d 6023 |
. . . . . . . 8
|
| 23 | 11, 22 | syl 14 |
. . . . . . 7
|
| 24 | mulidnq 7584 |
. . . . . . . 8
| |
| 25 | 7, 24 | syl 14 |
. . . . . . 7
|
| 26 | 20, 23, 25 | 3eqtrd 2266 |
. . . . . 6
|
| 27 | 26 | breq2d 4095 |
. . . . 5
|
| 28 | 18, 27 | bitrd 188 |
. . . 4
|
| 29 | prcdnql 7679 |
. . . . . 6
| |
| 30 | 4, 29 | sylan 283 |
. . . . 5
|
| 31 | 30 | ad2antrr 488 |
. . . 4
|
| 32 | 28, 31 | sylbid 150 |
. . 3
|
| 33 | df-imp 7664 |
. . . . . . . . 9
| |
| 34 | mulclnq 7571 |
. . . . . . . . 9
| |
| 35 | 33, 34 | genpprecll 7709 |
. . . . . . . 8
|
| 36 | 35 | exp4b 367 |
. . . . . . 7
|
| 37 | 36 | com34 83 |
. . . . . 6
|
| 38 | 37 | imp32 257 |
. . . . 5
|
| 39 | 38 | adantlr 477 |
. . . 4
|
| 40 | 39 | adantr 276 |
. . 3
|
| 41 | 32, 40 | syld 45 |
. 2
|
| 42 | mulassnqg 7579 |
. . . . 5
| |
| 43 | 3, 15, 11, 42 | syl3anc 1271 |
. . . 4
|
| 44 | mulcomnqg 7578 |
. . . . . . 7
| |
| 45 | 15, 11, 44 | syl2anc 411 |
. . . . . 6
|
| 46 | 11, 21 | syl 14 |
. . . . . 6
|
| 47 | 45, 46 | eqtrd 2262 |
. . . . 5
|
| 48 | 47 | oveq2d 6023 |
. . . 4
|
| 49 | mulidnq 7584 |
. . . . 5
| |
| 50 | 49 | adantl 277 |
. . . 4
|
| 51 | 43, 48, 50 | 3eqtrd 2266 |
. . 3
|
| 52 | 51 | eleq1d 2298 |
. 2
|
| 53 | 41, 52 | sylibd 149 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-1o 6568 df-oadd 6572 df-omul 6573 df-er 6688 df-ec 6690 df-qs 6694 df-ni 7499 df-mi 7501 df-lti 7502 df-mpq 7540 df-enq 7542 df-nqqs 7543 df-mqqs 7545 df-1nqqs 7546 df-rq 7547 df-ltnqqs 7548 df-inp 7661 df-imp 7664 |
| This theorem is referenced by: mullocprlem 7765 mulclpr 7767 |
| Copyright terms: Public domain | W3C validator |