ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprl Unicode version

Theorem mulnqprl 7635
Description: Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
Assertion
Ref Expression
mulnqprl  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  ->  X  e.  ( 1st `  ( A  .P.  B
) ) ) )

Proof of Theorem mulnqprl
Dummy variables  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltmnqg 7468 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )  ->  (
y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
21adantl 277 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A
) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q.  /\  w  e.  Q. )
)  ->  ( y  <Q  z  <->  ( w  .Q  y )  <Q  (
w  .Q  z ) ) )
3 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  X  e.  Q. )
4 prop 7542 . . . . . . . . 9  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
5 elprnql 7548 . . . . . . . . 9  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  G  e.  Q. )
64, 5sylan 283 . . . . . . . 8  |-  ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  ->  G  e.  Q. )
76ad2antrr 488 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  G  e.  Q. )
8 prop 7542 . . . . . . . . 9  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
9 elprnql 7548 . . . . . . . . 9  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  H  e.  Q. )
108, 9sylan 283 . . . . . . . 8  |-  ( ( B  e.  P.  /\  H  e.  ( 1st `  B ) )  ->  H  e.  Q. )
1110ad2antlr 489 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  H  e.  Q. )
12 mulclnq 7443 . . . . . . 7  |-  ( ( G  e.  Q.  /\  H  e.  Q. )  ->  ( G  .Q  H
)  e.  Q. )
137, 11, 12syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( G  .Q  H
)  e.  Q. )
14 recclnq 7459 . . . . . . 7  |-  ( H  e.  Q.  ->  ( *Q `  H )  e. 
Q. )
1511, 14syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( *Q `  H
)  e.  Q. )
16 mulcomnqg 7450 . . . . . . 7  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  =  ( z  .Q  y ) )
1716adantl 277 . . . . . 6  |-  ( ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A
) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  /\  ( y  e.  Q.  /\  z  e.  Q. )
)  ->  ( y  .Q  z )  =  ( z  .Q  y ) )
182, 3, 13, 15, 17caovord2d 6093 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  <->  ( X  .Q  ( *Q `  H
) )  <Q  (
( G  .Q  H
)  .Q  ( *Q
`  H ) ) ) )
19 mulassnqg 7451 . . . . . . . 8  |-  ( ( G  e.  Q.  /\  H  e.  Q.  /\  ( *Q `  H )  e. 
Q. )  ->  (
( G  .Q  H
)  .Q  ( *Q
`  H ) )  =  ( G  .Q  ( H  .Q  ( *Q `  H ) ) ) )
207, 11, 15, 19syl3anc 1249 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  .Q  ( *Q `  H ) )  =  ( G  .Q  ( H  .Q  ( *Q `  H ) ) ) )
21 recidnq 7460 . . . . . . . . 9  |-  ( H  e.  Q.  ->  ( H  .Q  ( *Q `  H ) )  =  1Q )
2221oveq2d 5938 . . . . . . . 8  |-  ( H  e.  Q.  ->  ( G  .Q  ( H  .Q  ( *Q `  H ) ) )  =  ( G  .Q  1Q ) )
2311, 22syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( G  .Q  ( H  .Q  ( *Q `  H ) ) )  =  ( G  .Q  1Q ) )
24 mulidnq 7456 . . . . . . . 8  |-  ( G  e.  Q.  ->  ( G  .Q  1Q )  =  G )
257, 24syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( G  .Q  1Q )  =  G )
2620, 23, 253eqtrd 2233 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( G  .Q  H )  .Q  ( *Q `  H ) )  =  G )
2726breq2d 4045 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  <Q  ( ( G  .Q  H )  .Q  ( *Q `  H
) )  <->  ( X  .Q  ( *Q `  H
) )  <Q  G ) )
2818, 27bitrd 188 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  <->  ( X  .Q  ( *Q `  H
) )  <Q  G ) )
29 prcdnql 7551 . . . . . 6  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  G  e.  ( 1st `  A ) )  -> 
( ( X  .Q  ( *Q `  H ) )  <Q  G  ->  ( X  .Q  ( *Q
`  H ) )  e.  ( 1st `  A
) ) )
304, 29sylan 283 . . . . 5  |-  ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  -> 
( ( X  .Q  ( *Q `  H ) )  <Q  G  ->  ( X  .Q  ( *Q
`  H ) )  e.  ( 1st `  A
) ) )
3130ad2antrr 488 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  <Q  G  ->  ( X  .Q  ( *Q
`  H ) )  e.  ( 1st `  A
) ) )
3228, 31sylbid 150 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  -> 
( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
) ) )
33 df-imp 7536 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y  .Q  z
) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y  .Q  z
) ) } >. )
34 mulclnq 7443 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y  .Q  z
)  e.  Q. )
3533, 34genpprecll 7581 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  /\  H  e.  ( 1st `  B ) )  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
3635exp4b 367 . . . . . . 7  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  ->  ( H  e.  ( 1st `  B
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) ) ) )
3736com34 83 . . . . . 6  |-  ( A  e.  P.  ->  ( B  e.  P.  ->  ( H  e.  ( 1st `  B )  ->  (
( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) ) ) )
3837imp32 257 . . . . 5  |-  ( ( A  e.  P.  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) )  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
3938adantlr 477 . . . 4  |-  ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) )  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A
)  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
4039adantr 276 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  e.  ( 1st `  A )  ->  (
( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
4132, 40syld 45 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  -> 
( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) ) ) )
42 mulassnqg 7451 . . . . 5  |-  ( ( X  e.  Q.  /\  ( *Q `  H )  e.  Q.  /\  H  e.  Q. )  ->  (
( X  .Q  ( *Q `  H ) )  .Q  H )  =  ( X  .Q  (
( *Q `  H
)  .Q  H ) ) )
433, 15, 11, 42syl3anc 1249 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  =  ( X  .Q  ( ( *Q `  H )  .Q  H
) ) )
44 mulcomnqg 7450 . . . . . . 7  |-  ( ( ( *Q `  H
)  e.  Q.  /\  H  e.  Q. )  ->  ( ( *Q `  H )  .Q  H
)  =  ( H  .Q  ( *Q `  H ) ) )
4515, 11, 44syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  H )  .Q  H
)  =  ( H  .Q  ( *Q `  H ) ) )
4611, 21syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( H  .Q  ( *Q `  H ) )  =  1Q )
4745, 46eqtrd 2229 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( *Q `  H )  .Q  H
)  =  1Q )
4847oveq2d 5938 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  (
( *Q `  H
)  .Q  H ) )  =  ( X  .Q  1Q ) )
49 mulidnq 7456 . . . . 5  |-  ( X  e.  Q.  ->  ( X  .Q  1Q )  =  X )
5049adantl 277 . . . 4  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  .Q  1Q )  =  X )
5143, 48, 503eqtrd 2233 . . 3  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( X  .Q  ( *Q `  H ) )  .Q  H )  =  X )
5251eleq1d 2265 . 2  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( ( ( X  .Q  ( *Q `  H ) )  .Q  H )  e.  ( 1st `  ( A  .P.  B ) )  <-> 
X  e.  ( 1st `  ( A  .P.  B
) ) ) )
5341, 52sylibd 149 1  |-  ( ( ( ( A  e. 
P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B
) ) )  /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H )  ->  X  e.  ( 1st `  ( A  .P.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   <.cop 3625   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347   1Qc1q 7348    .Q cmq 7350   *Qcrq 7351    <Q cltq 7352   P.cnp 7358    .P. cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-lti 7374  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533  df-imp 7536
This theorem is referenced by:  mullocprlem  7637  mulclpr  7639
  Copyright terms: Public domain W3C validator