| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulnqprl | Unicode version | ||
| Description: Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.) |
| Ref | Expression |
|---|---|
| mulnqprl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltmnqg 7556 |
. . . . . . 7
| |
| 2 | 1 | adantl 277 |
. . . . . 6
|
| 3 | simpr 110 |
. . . . . 6
| |
| 4 | prop 7630 |
. . . . . . . . 9
| |
| 5 | elprnql 7636 |
. . . . . . . . 9
| |
| 6 | 4, 5 | sylan 283 |
. . . . . . . 8
|
| 7 | 6 | ad2antrr 488 |
. . . . . . 7
|
| 8 | prop 7630 |
. . . . . . . . 9
| |
| 9 | elprnql 7636 |
. . . . . . . . 9
| |
| 10 | 8, 9 | sylan 283 |
. . . . . . . 8
|
| 11 | 10 | ad2antlr 489 |
. . . . . . 7
|
| 12 | mulclnq 7531 |
. . . . . . 7
| |
| 13 | 7, 11, 12 | syl2anc 411 |
. . . . . 6
|
| 14 | recclnq 7547 |
. . . . . . 7
| |
| 15 | 11, 14 | syl 14 |
. . . . . 6
|
| 16 | mulcomnqg 7538 |
. . . . . . 7
| |
| 17 | 16 | adantl 277 |
. . . . . 6
|
| 18 | 2, 3, 13, 15, 17 | caovord2d 6146 |
. . . . 5
|
| 19 | mulassnqg 7539 |
. . . . . . . 8
| |
| 20 | 7, 11, 15, 19 | syl3anc 1252 |
. . . . . . 7
|
| 21 | recidnq 7548 |
. . . . . . . . 9
| |
| 22 | 21 | oveq2d 5990 |
. . . . . . . 8
|
| 23 | 11, 22 | syl 14 |
. . . . . . 7
|
| 24 | mulidnq 7544 |
. . . . . . . 8
| |
| 25 | 7, 24 | syl 14 |
. . . . . . 7
|
| 26 | 20, 23, 25 | 3eqtrd 2246 |
. . . . . 6
|
| 27 | 26 | breq2d 4074 |
. . . . 5
|
| 28 | 18, 27 | bitrd 188 |
. . . 4
|
| 29 | prcdnql 7639 |
. . . . . 6
| |
| 30 | 4, 29 | sylan 283 |
. . . . 5
|
| 31 | 30 | ad2antrr 488 |
. . . 4
|
| 32 | 28, 31 | sylbid 150 |
. . 3
|
| 33 | df-imp 7624 |
. . . . . . . . 9
| |
| 34 | mulclnq 7531 |
. . . . . . . . 9
| |
| 35 | 33, 34 | genpprecll 7669 |
. . . . . . . 8
|
| 36 | 35 | exp4b 367 |
. . . . . . 7
|
| 37 | 36 | com34 83 |
. . . . . 6
|
| 38 | 37 | imp32 257 |
. . . . 5
|
| 39 | 38 | adantlr 477 |
. . . 4
|
| 40 | 39 | adantr 276 |
. . 3
|
| 41 | 32, 40 | syld 45 |
. 2
|
| 42 | mulassnqg 7539 |
. . . . 5
| |
| 43 | 3, 15, 11, 42 | syl3anc 1252 |
. . . 4
|
| 44 | mulcomnqg 7538 |
. . . . . . 7
| |
| 45 | 15, 11, 44 | syl2anc 411 |
. . . . . 6
|
| 46 | 11, 21 | syl 14 |
. . . . . 6
|
| 47 | 45, 46 | eqtrd 2242 |
. . . . 5
|
| 48 | 47 | oveq2d 5990 |
. . . 4
|
| 49 | mulidnq 7544 |
. . . . 5
| |
| 50 | 49 | adantl 277 |
. . . 4
|
| 51 | 43, 48, 50 | 3eqtrd 2246 |
. . 3
|
| 52 | 51 | eleq1d 2278 |
. 2
|
| 53 | 41, 52 | sylibd 149 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-eprel 4357 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-recs 6421 df-irdg 6486 df-1o 6532 df-oadd 6536 df-omul 6537 df-er 6650 df-ec 6652 df-qs 6656 df-ni 7459 df-mi 7461 df-lti 7462 df-mpq 7500 df-enq 7502 df-nqqs 7503 df-mqqs 7505 df-1nqqs 7506 df-rq 7507 df-ltnqqs 7508 df-inp 7621 df-imp 7624 |
| This theorem is referenced by: mullocprlem 7725 mulclpr 7727 |
| Copyright terms: Public domain | W3C validator |