Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recexprlemss1l | Unicode version |
Description: The lower cut of is a subset of the lower cut of one. Lemma for recexpr 7541. (Contributed by Jim Kingdon, 27-Dec-2019.) |
Ref | Expression |
---|---|
recexpr.1 |
Ref | Expression |
---|---|
recexprlemss1l |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recexpr.1 | . . . . . 6 | |
2 | 1 | recexprlempr 7535 | . . . . 5 |
3 | df-imp 7372 | . . . . . 6 | |
4 | mulclnq 7279 | . . . . . 6 | |
5 | 3, 4 | genpelvl 7415 | . . . . 5 |
6 | 2, 5 | mpdan 418 | . . . 4 |
7 | 1 | recexprlemell 7525 | . . . . . . . 8 |
8 | ltrelnq 7268 | . . . . . . . . . . . . . 14 | |
9 | 8 | brel 4635 | . . . . . . . . . . . . 13 |
10 | 9 | simprd 113 | . . . . . . . . . . . 12 |
11 | prop 7378 | . . . . . . . . . . . . . . . . . 18 | |
12 | elprnql 7384 | . . . . . . . . . . . . . . . . . 18 | |
13 | 11, 12 | sylan 281 | . . . . . . . . . . . . . . . . 17 |
14 | ltmnqi 7306 | . . . . . . . . . . . . . . . . . 18 | |
15 | 14 | expcom 115 | . . . . . . . . . . . . . . . . 17 |
16 | 13, 15 | syl 14 | . . . . . . . . . . . . . . . 16 |
17 | 16 | adantr 274 | . . . . . . . . . . . . . . 15 |
18 | prltlu 7390 | . . . . . . . . . . . . . . . . . . 19 | |
19 | 11, 18 | syl3an1 1253 | . . . . . . . . . . . . . . . . . 18 |
20 | 19 | 3expia 1187 | . . . . . . . . . . . . . . . . 17 |
21 | 20 | adantr 274 | . . . . . . . . . . . . . . . 16 |
22 | ltmnqi 7306 | . . . . . . . . . . . . . . . . . . . . 21 | |
23 | 22 | expcom 115 | . . . . . . . . . . . . . . . . . . . 20 |
24 | 23 | adantr 274 | . . . . . . . . . . . . . . . . . . 19 |
25 | mulcomnqg 7286 | . . . . . . . . . . . . . . . . . . . 20 | |
26 | recidnq 7296 | . . . . . . . . . . . . . . . . . . . . 21 | |
27 | 26 | adantr 274 | . . . . . . . . . . . . . . . . . . . 20 |
28 | 25, 27 | breq12d 3978 | . . . . . . . . . . . . . . . . . . 19 |
29 | 24, 28 | sylibd 148 | . . . . . . . . . . . . . . . . . 18 |
30 | 29 | ancoms 266 | . . . . . . . . . . . . . . . . 17 |
31 | 13, 30 | sylan 281 | . . . . . . . . . . . . . . . 16 |
32 | 21, 31 | syld 45 | . . . . . . . . . . . . . . 15 |
33 | 17, 32 | anim12d 333 | . . . . . . . . . . . . . 14 |
34 | ltsonq 7301 | . . . . . . . . . . . . . . 15 | |
35 | 34, 8 | sotri 4978 | . . . . . . . . . . . . . 14 |
36 | 33, 35 | syl6 33 | . . . . . . . . . . . . 13 |
37 | 36 | exp4b 365 | . . . . . . . . . . . 12 |
38 | 10, 37 | syl5 32 | . . . . . . . . . . 11 |
39 | 38 | pm2.43d 50 | . . . . . . . . . 10 |
40 | 39 | impd 252 | . . . . . . . . 9 |
41 | 40 | exlimdv 1799 | . . . . . . . 8 |
42 | 7, 41 | syl5bi 151 | . . . . . . 7 |
43 | breq1 3968 | . . . . . . . 8 | |
44 | 43 | biimprcd 159 | . . . . . . 7 |
45 | 42, 44 | syl6 33 | . . . . . 6 |
46 | 45 | expimpd 361 | . . . . 5 |
47 | 46 | rexlimdvv 2581 | . . . 4 |
48 | 6, 47 | sylbid 149 | . . 3 |
49 | 1prl 7458 | . . . 4 | |
50 | 49 | abeq2i 2268 | . . 3 |
51 | 48, 50 | syl6ibr 161 | . 2 |
52 | 51 | ssrdv 3134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wex 1472 wcel 2128 cab 2143 wrex 2436 wss 3102 cop 3563 class class class wbr 3965 cfv 5167 (class class class)co 5818 c1st 6080 c2nd 6081 cnq 7183 c1q 7184 cmq 7186 crq 7187 cltq 7188 cnp 7194 c1p 7195 cmp 7197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-iinf 4545 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4248 df-id 4252 df-po 4255 df-iso 4256 df-iord 4325 df-on 4327 df-suc 4330 df-iom 4548 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-recs 6246 df-irdg 6311 df-1o 6357 df-oadd 6361 df-omul 6362 df-er 6473 df-ec 6475 df-qs 6479 df-ni 7207 df-pli 7208 df-mi 7209 df-lti 7210 df-plpq 7247 df-mpq 7248 df-enq 7250 df-nqqs 7251 df-plqqs 7252 df-mqqs 7253 df-1nqqs 7254 df-rq 7255 df-ltnqqs 7256 df-inp 7369 df-i1p 7370 df-imp 7372 |
This theorem is referenced by: recexprlemex 7540 |
Copyright terms: Public domain | W3C validator |