ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  distrlem5pru Unicode version

Theorem distrlem5pru 7419
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
Assertion
Ref Expression
distrlem5pru  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )

Proof of Theorem distrlem5pru
Dummy variables  x  y  z  w  v  u  f  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulclpr 7404 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( A  .P.  B
)  e.  P. )
213adant3 1002 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  B )  e. 
P. )
3 mulclpr 7404 . . . . 5  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C
)  e.  P. )
433adant2 1001 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  C )  e. 
P. )
5 df-iplp 7300 . . . . 5  |-  +P.  =  ( x  e.  P. ,  y  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  x )  /\  h  e.  ( 1st `  y
)  /\  f  =  ( g  +Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  x )  /\  h  e.  ( 2nd `  y
)  /\  f  =  ( g  +Q  h
) ) } >. )
6 addclnq 7207 . . . . 5  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  +Q  h
)  e.  Q. )
75, 6genpelvu 7345 . . . 4  |-  ( ( ( A  .P.  B
)  e.  P.  /\  ( A  .P.  C )  e.  P. )  -> 
( w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 2nd `  ( A  .P.  B ) ) E. u  e.  ( 2nd `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
82, 4, 7syl2anc 409 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  <->  E. v  e.  ( 2nd `  ( A  .P.  B ) ) E. u  e.  ( 2nd `  ( A  .P.  C ) ) w  =  ( v  +Q  u ) ) )
9 df-imp 7301 . . . . . . . 8  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  x  =  ( g  .Q  h
) ) } ,  { x  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  x  =  ( g  .Q  h
) ) } >. )
10 mulclnq 7208 . . . . . . . 8  |-  ( ( g  e.  Q.  /\  h  e.  Q. )  ->  ( g  .Q  h
)  e.  Q. )
119, 10genpelvu 7345 . . . . . . 7  |-  ( ( A  e.  P.  /\  C  e.  P. )  ->  ( u  e.  ( 2nd `  ( A  .P.  C ) )  <->  E. f  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  C ) u  =  ( f  .Q  z
) ) )
12113adant2 1001 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
u  e.  ( 2nd `  ( A  .P.  C
) )  <->  E. f  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  C
) u  =  ( f  .Q  z ) ) )
1312anbi2d 460 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 2nd `  ( A  .P.  B ) )  /\  u  e.  ( 2nd `  ( A  .P.  C ) ) )  <->  ( v  e.  ( 2nd `  ( A  .P.  B ) )  /\  E. f  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  C
) u  =  ( f  .Q  z ) ) ) )
14 df-imp 7301 . . . . . . . . 9  |-  .P.  =  ( w  e.  P. ,  v  e.  P.  |->  <. { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 1st `  w )  /\  h  e.  ( 1st `  v
)  /\  f  =  ( g  .Q  h
) ) } ,  { f  e.  Q.  |  E. g  e.  Q.  E. h  e.  Q.  (
g  e.  ( 2nd `  w )  /\  h  e.  ( 2nd `  v
)  /\  f  =  ( g  .Q  h
) ) } >. )
1514, 10genpelvu 7345 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( v  e.  ( 2nd `  ( A  .P.  B ) )  <->  E. x  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) v  =  ( x  .Q  y
) ) )
16153adant3 1002 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 2nd `  ( A  .P.  B
) )  <->  E. x  e.  ( 2nd `  A
) E. y  e.  ( 2nd `  B
) v  =  ( x  .Q  y ) ) )
17 distrlem4pru 7417 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( x  .Q  y )  +Q  (
f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
18 oveq12 5791 . . . . . . . . . . . . . . . . . 18  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( v  +Q  u
)  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) )
1918eqeq2d 2152 . . . . . . . . . . . . . . . . 17  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  <-> 
w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z ) ) ) )
20 eleq1 2203 . . . . . . . . . . . . . . . . 17  |-  ( w  =  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  ->  (
w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2119, 20syl6bi 162 . . . . . . . . . . . . . . . 16  |-  ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  -> 
( w  =  ( v  +Q  u )  ->  ( w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( (
x  .Q  y )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
2221imp 123 . . . . . . . . . . . . . . 15  |-  ( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u
) )  ->  (
w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  <->  ( ( x  .Q  y )  +Q  ( f  .Q  z
) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2317, 22syl5ibrcom 156 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) ) )  -> 
( ( ( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  /\  w  =  ( v  +Q  u ) )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
2423exp4b 365 . . . . . . . . . . . . 13  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( ( x  e.  ( 2nd `  A
)  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2524com3l 81 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) ) )  ->  (
( v  =  ( x  .Q  y )  /\  u  =  ( f  .Q  z ) )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
2625exp4b 365 . . . . . . . . . . 11  |-  ( ( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B
) )  ->  (
( f  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  C ) )  ->  ( v  =  ( x  .Q  y )  ->  (
u  =  ( f  .Q  z )  -> 
( ( A  e. 
P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2726com23 78 . . . . . . . . . 10  |-  ( ( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B
) )  ->  (
v  =  ( x  .Q  y )  -> 
( ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) ) )
2827rexlimivv 2558 . . . . . . . . 9  |-  ( E. x  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B
) v  =  ( x  .Q  y )  ->  ( ( f  e.  ( 2nd `  A
)  /\  z  e.  ( 2nd `  C ) )  ->  ( u  =  ( f  .Q  z )  ->  (
( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) ) )
2928rexlimdvv 2559 . . . . . . . 8  |-  ( E. x  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B
) v  =  ( x  .Q  y )  ->  ( E. f  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  C
) u  =  ( f  .Q  z )  ->  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e. 
P. )  ->  (
w  =  ( v  +Q  u )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3029com3r 79 . . . . . . 7  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. x  e.  ( 2nd `  A ) E. y  e.  ( 2nd `  B ) v  =  ( x  .Q  y
)  ->  ( E. f  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  C
) u  =  ( f  .Q  z )  ->  ( w  =  ( v  +Q  u
)  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3116, 30sylbid 149 . . . . . 6  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
v  e.  ( 2nd `  ( A  .P.  B
) )  ->  ( E. f  e.  ( 2nd `  A ) E. z  e.  ( 2nd `  C ) u  =  ( f  .Q  z
)  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) ) )
3231impd 252 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 2nd `  ( A  .P.  B ) )  /\  E. f  e.  ( 2nd `  A
) E. z  e.  ( 2nd `  C
) u  =  ( f  .Q  z ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3313, 32sylbid 149 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
( v  e.  ( 2nd `  ( A  .P.  B ) )  /\  u  e.  ( 2nd `  ( A  .P.  C ) ) )  ->  ( w  =  ( v  +Q  u )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) ) )
3433rexlimdvv 2559 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( E. v  e.  ( 2nd `  ( A  .P.  B ) ) E. u  e.  ( 2nd `  ( A  .P.  C ) ) w  =  ( v  +Q  u )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
358, 34sylbid 149 . 2  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  (
w  e.  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  ->  w  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) ) )
3635ssrdv 3108 1  |-  ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C
) ) )  C_  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1332    e. wcel 1481   E.wrex 2418    C_ wss 3076   ` cfv 5131  (class class class)co 5782   2ndc2nd 6045    +Q cplq 7114    .Q cmq 7115   P.cnp 7123    +P. cpp 7125    .P. cmp 7126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iplp 7300  df-imp 7301
This theorem is referenced by:  distrprg  7420
  Copyright terms: Public domain W3C validator