Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > distrlem5pru | Unicode version |
Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
Ref | Expression |
---|---|
distrlem5pru |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulclpr 7495 | . . . . 5 | |
2 | 1 | 3adant3 1002 | . . . 4 |
3 | mulclpr 7495 | . . . . 5 | |
4 | 3 | 3adant2 1001 | . . . 4 |
5 | df-iplp 7391 | . . . . 5 | |
6 | addclnq 7298 | . . . . 5 | |
7 | 5, 6 | genpelvu 7436 | . . . 4 |
8 | 2, 4, 7 | syl2anc 409 | . . 3 |
9 | df-imp 7392 | . . . . . . . 8 | |
10 | mulclnq 7299 | . . . . . . . 8 | |
11 | 9, 10 | genpelvu 7436 | . . . . . . 7 |
12 | 11 | 3adant2 1001 | . . . . . 6 |
13 | 12 | anbi2d 460 | . . . . 5 |
14 | df-imp 7392 | . . . . . . . . 9 | |
15 | 14, 10 | genpelvu 7436 | . . . . . . . 8 |
16 | 15 | 3adant3 1002 | . . . . . . 7 |
17 | distrlem4pru 7508 | . . . . . . . . . . . . . . 15 | |
18 | oveq12 5836 | . . . . . . . . . . . . . . . . . 18 | |
19 | 18 | eqeq2d 2169 | . . . . . . . . . . . . . . . . 17 |
20 | eleq1 2220 | . . . . . . . . . . . . . . . . 17 | |
21 | 19, 20 | syl6bi 162 | . . . . . . . . . . . . . . . 16 |
22 | 21 | imp 123 | . . . . . . . . . . . . . . 15 |
23 | 17, 22 | syl5ibrcom 156 | . . . . . . . . . . . . . 14 |
24 | 23 | exp4b 365 | . . . . . . . . . . . . 13 |
25 | 24 | com3l 81 | . . . . . . . . . . . 12 |
26 | 25 | exp4b 365 | . . . . . . . . . . 11 |
27 | 26 | com23 78 | . . . . . . . . . 10 |
28 | 27 | rexlimivv 2580 | . . . . . . . . 9 |
29 | 28 | rexlimdvv 2581 | . . . . . . . 8 |
30 | 29 | com3r 79 | . . . . . . 7 |
31 | 16, 30 | sylbid 149 | . . . . . 6 |
32 | 31 | impd 252 | . . . . 5 |
33 | 13, 32 | sylbid 149 | . . . 4 |
34 | 33 | rexlimdvv 2581 | . . 3 |
35 | 8, 34 | sylbid 149 | . 2 |
36 | 35 | ssrdv 3134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wrex 2436 wss 3102 cfv 5173 (class class class)co 5827 c2nd 6090 cplq 7205 cmq 7206 cnp 7214 cpp 7216 cmp 7217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4082 ax-sep 4085 ax-nul 4093 ax-pow 4138 ax-pr 4172 ax-un 4396 ax-setind 4499 ax-iinf 4550 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4029 df-mpt 4030 df-tr 4066 df-eprel 4252 df-id 4256 df-po 4259 df-iso 4260 df-iord 4329 df-on 4331 df-suc 4334 df-iom 4553 df-xp 4595 df-rel 4596 df-cnv 4597 df-co 4598 df-dm 4599 df-rn 4600 df-res 4601 df-ima 4602 df-iota 5138 df-fun 5175 df-fn 5176 df-f 5177 df-f1 5178 df-fo 5179 df-f1o 5180 df-fv 5181 df-ov 5830 df-oprab 5831 df-mpo 5832 df-1st 6091 df-2nd 6092 df-recs 6255 df-irdg 6320 df-1o 6366 df-2o 6367 df-oadd 6370 df-omul 6371 df-er 6483 df-ec 6485 df-qs 6489 df-ni 7227 df-pli 7228 df-mi 7229 df-lti 7230 df-plpq 7267 df-mpq 7268 df-enq 7270 df-nqqs 7271 df-plqqs 7272 df-mqqs 7273 df-1nqqs 7274 df-rq 7275 df-ltnqqs 7276 df-enq0 7347 df-nq0 7348 df-0nq0 7349 df-plq0 7350 df-mq0 7351 df-inp 7389 df-iplp 7391 df-imp 7392 |
This theorem is referenced by: distrprg 7511 |
Copyright terms: Public domain | W3C validator |