| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > distrlem5pru | Unicode version | ||
| Description: Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| distrlem5pru |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulclpr 7720 |
. . . . 5
| |
| 2 | 1 | 3adant3 1020 |
. . . 4
|
| 3 | mulclpr 7720 |
. . . . 5
| |
| 4 | 3 | 3adant2 1019 |
. . . 4
|
| 5 | df-iplp 7616 |
. . . . 5
| |
| 6 | addclnq 7523 |
. . . . 5
| |
| 7 | 5, 6 | genpelvu 7661 |
. . . 4
|
| 8 | 2, 4, 7 | syl2anc 411 |
. . 3
|
| 9 | df-imp 7617 |
. . . . . . . 8
| |
| 10 | mulclnq 7524 |
. . . . . . . 8
| |
| 11 | 9, 10 | genpelvu 7661 |
. . . . . . 7
|
| 12 | 11 | 3adant2 1019 |
. . . . . 6
|
| 13 | 12 | anbi2d 464 |
. . . . 5
|
| 14 | df-imp 7617 |
. . . . . . . . 9
| |
| 15 | 14, 10 | genpelvu 7661 |
. . . . . . . 8
|
| 16 | 15 | 3adant3 1020 |
. . . . . . 7
|
| 17 | distrlem4pru 7733 |
. . . . . . . . . . . . . . 15
| |
| 18 | oveq12 5976 |
. . . . . . . . . . . . . . . . . 18
| |
| 19 | 18 | eqeq2d 2219 |
. . . . . . . . . . . . . . . . 17
|
| 20 | eleq1 2270 |
. . . . . . . . . . . . . . . . 17
| |
| 21 | 19, 20 | biimtrdi 163 |
. . . . . . . . . . . . . . . 16
|
| 22 | 21 | imp 124 |
. . . . . . . . . . . . . . 15
|
| 23 | 17, 22 | syl5ibrcom 157 |
. . . . . . . . . . . . . 14
|
| 24 | 23 | exp4b 367 |
. . . . . . . . . . . . 13
|
| 25 | 24 | com3l 81 |
. . . . . . . . . . . 12
|
| 26 | 25 | exp4b 367 |
. . . . . . . . . . 11
|
| 27 | 26 | com23 78 |
. . . . . . . . . 10
|
| 28 | 27 | rexlimivv 2631 |
. . . . . . . . 9
|
| 29 | 28 | rexlimdvv 2632 |
. . . . . . . 8
|
| 30 | 29 | com3r 79 |
. . . . . . 7
|
| 31 | 16, 30 | sylbid 150 |
. . . . . 6
|
| 32 | 31 | impd 254 |
. . . . 5
|
| 33 | 13, 32 | sylbid 150 |
. . . 4
|
| 34 | 33 | rexlimdvv 2632 |
. . 3
|
| 35 | 8, 34 | sylbid 150 |
. 2
|
| 36 | 35 | ssrdv 3207 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-iplp 7616 df-imp 7617 |
| This theorem is referenced by: distrprg 7736 |
| Copyright terms: Public domain | W3C validator |