Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeq1 | Unicode version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq1 5398 | . . 3 | |
2 | foeq1 5416 | . . 3 | |
3 | 1, 2 | anbi12d 470 | . 2 |
4 | df-f1o 5205 | . 2 | |
5 | df-f1o 5205 | . 2 | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wf1 5195 wfo 5196 wf1o 5197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 |
This theorem is referenced by: f1oeq123d 5437 f1ocnvb 5456 f1orescnv 5458 f1ovi 5481 f1osng 5483 f1oresrab 5661 fsn 5668 isoeq1 5780 mapsn 6668 mapsnf1o3 6675 f1oen3g 6732 ensn1 6774 xpcomf1o 6803 xpen 6823 seq3f1olemstep 10457 seq3f1olemp 10458 fihasheqf1oi 10722 fihashf1rn 10723 hashfacen 10771 summodc 11346 fsum3 11350 prodmodc 11541 fprodseq 11546 eulerthlemh 12185 relogf1o 13576 |
Copyright terms: Public domain | W3C validator |