| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq1 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq1 5498 |
. . 3
| |
| 2 | foeq1 5516 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5297 |
. 2
| |
| 5 | df-f1o 5297 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 |
| This theorem is referenced by: f1oeq123d 5538 f1oeq1d 5539 f1ocnvb 5558 f1orescnv 5560 f1ovi 5584 f1osng 5586 f1oresrab 5768 fsn 5775 isoeq1 5893 mapsn 6800 mapsnf1o3 6807 f1oen4g 6866 f1oen3g 6868 ensn1 6911 en2prd 6933 xpcomf1o 6945 xpen 6967 seq3f1olemstep 10696 seq3f1olemp 10697 seqf1oglem2 10702 seqf1og 10703 fihasheqf1oi 10969 fihashf1rn 10970 hashfacen 11018 summodc 11809 fsum3 11813 prodmodc 12004 fprodseq 12009 eulerthlemh 12668 relogf1o 15448 2lgslem1 15683 |
| Copyright terms: Public domain | W3C validator |