| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq1 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq1 5526 |
. . 3
| |
| 2 | foeq1 5544 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5325 |
. 2
| |
| 5 | df-f1o 5325 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 |
| This theorem is referenced by: f1oeq123d 5566 f1oeq1d 5567 f1ocnvb 5586 f1orescnv 5588 f1ovi 5612 f1osng 5614 f1oresrab 5800 fsn 5807 isoeq1 5925 mapsn 6837 mapsnf1o3 6844 f1oen4g 6903 f1oen3g 6905 ensn1 6948 en2prd 6970 xpcomf1o 6984 xpen 7006 seq3f1olemstep 10736 seq3f1olemp 10737 seqf1oglem2 10742 seqf1og 10743 fihasheqf1oi 11009 fihashf1rn 11010 hashfacen 11058 summodc 11894 fsum3 11898 prodmodc 12089 fprodseq 12094 eulerthlemh 12753 relogf1o 15535 2lgslem1 15770 |
| Copyright terms: Public domain | W3C validator |