| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq1 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq1 5461 |
. . 3
| |
| 2 | foeq1 5479 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5266 |
. 2
| |
| 5 | df-f1o 5266 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 |
| This theorem is referenced by: f1oeq123d 5501 f1oeq1d 5502 f1ocnvb 5521 f1orescnv 5523 f1ovi 5546 f1osng 5548 f1oresrab 5730 fsn 5737 isoeq1 5851 mapsn 6758 mapsnf1o3 6765 f1oen3g 6822 ensn1 6864 xpcomf1o 6893 xpen 6915 seq3f1olemstep 10623 seq3f1olemp 10624 seqf1oglem2 10629 seqf1og 10630 fihasheqf1oi 10896 fihashf1rn 10897 hashfacen 10945 summodc 11565 fsum3 11569 prodmodc 11760 fprodseq 11765 eulerthlemh 12424 relogf1o 15181 2lgslem1 15416 |
| Copyright terms: Public domain | W3C validator |