| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq1 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq1 5478 |
. . 3
| |
| 2 | foeq1 5496 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5279 |
. 2
| |
| 5 | df-f1o 5279 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4046 df-opab 4107 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 |
| This theorem is referenced by: f1oeq123d 5518 f1oeq1d 5519 f1ocnvb 5538 f1orescnv 5540 f1ovi 5563 f1osng 5565 f1oresrab 5747 fsn 5754 isoeq1 5872 mapsn 6779 mapsnf1o3 6786 f1oen4g 6845 f1oen3g 6847 ensn1 6890 en2prd 6911 xpcomf1o 6922 xpen 6944 seq3f1olemstep 10661 seq3f1olemp 10662 seqf1oglem2 10667 seqf1og 10668 fihasheqf1oi 10934 fihashf1rn 10935 hashfacen 10983 summodc 11727 fsum3 11731 prodmodc 11922 fprodseq 11927 eulerthlemh 12586 relogf1o 15366 2lgslem1 15601 |
| Copyright terms: Public domain | W3C validator |