Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeq1 | Unicode version |
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1oeq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq1 5367 | . . 3 | |
2 | foeq1 5385 | . . 3 | |
3 | 1, 2 | anbi12d 465 | . 2 |
4 | df-f1o 5174 | . 2 | |
5 | df-f1o 5174 | . 2 | |
6 | 3, 4, 5 | 3bitr4g 222 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wf1 5164 wfo 5165 wf1o 5166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 |
This theorem is referenced by: f1oeq123d 5406 f1ocnvb 5425 f1orescnv 5427 f1ovi 5450 f1osng 5452 f1oresrab 5629 fsn 5636 isoeq1 5746 mapsn 6628 mapsnf1o3 6635 f1oen3g 6692 ensn1 6734 xpcomf1o 6763 xpen 6783 seq3f1olemstep 10382 seq3f1olemp 10383 fihasheqf1oi 10644 fihashf1rn 10645 hashfacen 10689 summodc 11262 fsum3 11266 prodmodc 11457 fprodseq 11462 eulerthlemh 12083 relogf1o 13142 |
Copyright terms: Public domain | W3C validator |