ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1oeq1 Unicode version

Theorem f1oeq1 5400
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq1  |-  ( F  =  G  ->  ( F : A -1-1-onto-> B  <->  G : A -1-1-onto-> B ) )

Proof of Theorem f1oeq1
StepHypRef Expression
1 f1eq1 5367 . . 3  |-  ( F  =  G  ->  ( F : A -1-1-> B  <->  G : A -1-1-> B ) )
2 foeq1 5385 . . 3  |-  ( F  =  G  ->  ( F : A -onto-> B  <->  G : A -onto-> B ) )
31, 2anbi12d 465 . 2  |-  ( F  =  G  ->  (
( F : A -1-1-> B  /\  F : A -onto-> B )  <->  ( G : A -1-1-> B  /\  G : A -onto-> B ) ) )
4 df-f1o 5174 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
5 df-f1o 5174 . 2  |-  ( G : A -1-1-onto-> B  <->  ( G : A -1-1-> B  /\  G : A -onto-> B ) )
63, 4, 53bitr4g 222 1  |-  ( F  =  G  ->  ( F : A -1-1-onto-> B  <->  G : A -1-1-onto-> B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335   -1-1->wf1 5164   -onto->wfo 5165   -1-1-onto->wf1o 5166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-br 3966  df-opab 4026  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-fun 5169  df-fn 5170  df-f 5171  df-f1 5172  df-fo 5173  df-f1o 5174
This theorem is referenced by:  f1oeq123d  5406  f1ocnvb  5425  f1orescnv  5427  f1ovi  5450  f1osng  5452  f1oresrab  5629  fsn  5636  isoeq1  5746  mapsn  6628  mapsnf1o3  6635  f1oen3g  6692  ensn1  6734  xpcomf1o  6763  xpen  6783  seq3f1olemstep  10382  seq3f1olemp  10383  fihasheqf1oi  10644  fihashf1rn  10645  hashfacen  10689  summodc  11262  fsum3  11266  prodmodc  11457  fprodseq  11462  eulerthlemh  12083  relogf1o  13142
  Copyright terms: Public domain W3C validator