| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1oeq1 | Unicode version | ||
| Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1oeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq1 5476 |
. . 3
| |
| 2 | foeq1 5494 |
. . 3
| |
| 3 | 1, 2 | anbi12d 473 |
. 2
|
| 4 | df-f1o 5278 |
. 2
| |
| 5 | df-f1o 5278 |
. 2
| |
| 6 | 3, 4, 5 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 |
| This theorem is referenced by: f1oeq123d 5516 f1oeq1d 5517 f1ocnvb 5536 f1orescnv 5538 f1ovi 5561 f1osng 5563 f1oresrab 5745 fsn 5752 isoeq1 5870 mapsn 6777 mapsnf1o3 6784 f1oen4g 6843 f1oen3g 6845 ensn1 6888 en2prd 6909 xpcomf1o 6920 xpen 6942 seq3f1olemstep 10659 seq3f1olemp 10660 seqf1oglem2 10665 seqf1og 10666 fihasheqf1oi 10932 fihashf1rn 10933 hashfacen 10981 summodc 11694 fsum3 11698 prodmodc 11889 fprodseq 11894 eulerthlemh 12553 relogf1o 15333 2lgslem1 15568 |
| Copyright terms: Public domain | W3C validator |