ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgen Unicode version

Theorem eqgen 13759
Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
Assertion
Ref Expression
eqgen  |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )

Proof of Theorem eqgen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2  |-  ( X /.  .~  )  =  ( X /.  .~  )
2 breq2 4086 . 2  |-  ( [ x ]  .~  =  A  ->  ( Y  ~~  [ x ]  .~  <->  Y  ~~  A ) )
3 simpl 109 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  e.  (SubGrp `  G )
)
4 subgrcl 13711 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5 eqger.x . . . . . . . 8  |-  X  =  ( Base `  G
)
65subgss 13706 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
74, 6jca 306 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G  e.  Grp  /\  Y  C_  X ) )
8 eqger.r . . . . . . . 8  |-  .~  =  ( G ~QG  Y )
9 eqid 2229 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
105, 8, 9eqglact 13757 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  x  e.  X )  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
11103expa 1227 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  x  e.  X
)  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
127, 11sylan 283 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
135, 8eqger 13756 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)
14 basfn 13086 . . . . . . . . . 10  |-  Base  Fn  _V
154elexd 2813 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  _V )
16 funfvex 5643 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1716funfni 5422 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1814, 15, 17sylancr 414 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  ( Base `  G )  e.  _V )
195, 18eqeltrid 2316 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  X  e.  _V )
20 erex 6702 . . . . . . . 8  |-  (  .~  Er  X  ->  ( X  e.  _V  ->  .~  e.  _V ) )
2113, 19, 20sylc 62 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  e.  _V )
22 ecexg 6682 . . . . . . 7  |-  (  .~  e.  _V  ->  [ x ]  .~  e.  _V )
2321, 22syl 14 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  [ x ]  .~  e.  _V )
2423adantr 276 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  [ x ]  .~  e.  _V )
2512, 24eqeltrrd 2307 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y )  e.  _V )
26 eqid 2229 . . . . . . . . 9  |-  ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) )  =  ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) )
2726, 5, 9grplactf1o 13631 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `
 x ) : X -1-1-onto-> X )
2826, 5grplactfval 13629 . . . . . . . . . 10  |-  ( x  e.  X  ->  (
( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `  x
)  =  ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) )
2928adantl 277 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `
 x )  =  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) )
3029f1oeq1d 5566 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) ) `  x ) : X -1-1-onto-> X  <->  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-onto-> X ) )
3127, 30mpbid 147 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-onto-> X )
324, 31sylan 283 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-onto-> X )
33 f1of1 5570 . . . . . 6  |-  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-onto-> X  ->  ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-> X )
3432, 33syl 14 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-> X )
356adantr 276 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  C_  X )
36 f1ores 5586 . . . . 5  |-  ( ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-> X  /\  Y  C_  X )  ->  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )  |`  Y ) : Y -1-1-onto-> (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
3734, 35, 36syl2anc 411 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) )  |`  Y ) : Y -1-1-onto-> ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
38 f1oen2g 6904 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y )  e.  _V  /\  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) )  |`  Y ) : Y -1-1-onto-> ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )  ->  Y  ~~  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
393, 25, 37, 38syl3anc 1271 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  ~~  ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
4039, 12breqtrrd 4110 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  ~~  [ x ]  .~  )
411, 2, 40ectocld 6746 1  |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   class class class wbr 4082    |-> cmpt 4144    |` cres 4720   "cima 4721    Fn wfn 5312   -1-1->wf1 5314   -1-1-onto->wf1o 5316   ` cfv 5317  (class class class)co 6000    Er wer 6675   [cec 6676   /.cqs 6677    ~~ cen 6883   Basecbs 13027   +g cplusg 13105   Grpcgrp 13528  SubGrpcsubg 13699   ~QG cqg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-er 6678  df-ec 6680  df-qs 6684  df-en 6886  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-subg 13702  df-eqg 13704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator