ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgen Unicode version

Theorem eqgen 13091
Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
Assertion
Ref Expression
eqgen  |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )

Proof of Theorem eqgen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . 2  |-  ( X /.  .~  )  =  ( X /.  .~  )
2 breq2 4009 . 2  |-  ( [ x ]  .~  =  A  ->  ( Y  ~~  [ x ]  .~  <->  Y  ~~  A ) )
3 simpl 109 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  e.  (SubGrp `  G )
)
4 subgrcl 13044 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5 eqger.x . . . . . . . 8  |-  X  =  ( Base `  G
)
65subgss 13039 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
74, 6jca 306 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G  e.  Grp  /\  Y  C_  X ) )
8 eqger.r . . . . . . . 8  |-  .~  =  ( G ~QG  Y )
9 eqid 2177 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
105, 8, 9eqglact 13089 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  x  e.  X )  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
11103expa 1203 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  x  e.  X
)  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
127, 11sylan 283 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
135, 8eqger 13088 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)
14 basfn 12522 . . . . . . . . . 10  |-  Base  Fn  _V
154elexd 2752 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  _V )
16 funfvex 5534 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1716funfni 5318 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1814, 15, 17sylancr 414 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  ( Base `  G )  e.  _V )
195, 18eqeltrid 2264 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  X  e.  _V )
20 erex 6561 . . . . . . . 8  |-  (  .~  Er  X  ->  ( X  e.  _V  ->  .~  e.  _V ) )
2113, 19, 20sylc 62 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  e.  _V )
22 ecexg 6541 . . . . . . 7  |-  (  .~  e.  _V  ->  [ x ]  .~  e.  _V )
2321, 22syl 14 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  [ x ]  .~  e.  _V )
2423adantr 276 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  [ x ]  .~  e.  _V )
2512, 24eqeltrrd 2255 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y )  e.  _V )
26 eqid 2177 . . . . . . . . 9  |-  ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) )  =  ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) )
2726, 5, 9grplactf1o 12978 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `
 x ) : X -1-1-onto-> X )
2826, 5grplactfval 12976 . . . . . . . . . 10  |-  ( x  e.  X  ->  (
( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `  x
)  =  ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) )
2928adantl 277 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `
 x )  =  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) )
3029f1oeq1d 5458 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) ) `  x ) : X -1-1-onto-> X  <->  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-onto-> X ) )
3127, 30mpbid 147 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-onto-> X )
324, 31sylan 283 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-onto-> X )
33 f1of1 5462 . . . . . 6  |-  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-onto-> X  ->  ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-> X )
3432, 33syl 14 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-> X )
356adantr 276 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  C_  X )
36 f1ores 5478 . . . . 5  |-  ( ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-> X  /\  Y  C_  X )  ->  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )  |`  Y ) : Y -1-1-onto-> (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
3734, 35, 36syl2anc 411 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) )  |`  Y ) : Y -1-1-onto-> ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
38 f1oen2g 6757 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y )  e.  _V  /\  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) )  |`  Y ) : Y -1-1-onto-> ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )  ->  Y  ~~  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
393, 25, 37, 38syl3anc 1238 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  ~~  ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
4039, 12breqtrrd 4033 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  ~~  [ x ]  .~  )
411, 2, 40ectocld 6603 1  |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   class class class wbr 4005    |-> cmpt 4066    |` cres 4630   "cima 4631    Fn wfn 5213   -1-1->wf1 5215   -1-1-onto->wf1o 5217   ` cfv 5218  (class class class)co 5877    Er wer 6534   [cec 6535   /.cqs 6536    ~~ cen 6740   Basecbs 12464   +g cplusg 12538   Grpcgrp 12882  SubGrpcsubg 13032   ~QG cqg 13034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-pre-ltirr 7925  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-er 6537  df-ec 6539  df-qs 6543  df-en 6743  df-pnf 7996  df-mnf 7997  df-ltxr 7999  df-inn 8922  df-2 8980  df-ndx 12467  df-slot 12468  df-base 12470  df-sets 12471  df-iress 12472  df-plusg 12551  df-0g 12712  df-mgm 12780  df-sgrp 12813  df-mnd 12823  df-grp 12885  df-minusg 12886  df-subg 13035  df-eqg 13037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator