ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgen Unicode version

Theorem eqgen 13357
Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
Assertion
Ref Expression
eqgen  |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )

Proof of Theorem eqgen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2196 . 2  |-  ( X /.  .~  )  =  ( X /.  .~  )
2 breq2 4037 . 2  |-  ( [ x ]  .~  =  A  ->  ( Y  ~~  [ x ]  .~  <->  Y  ~~  A ) )
3 simpl 109 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  e.  (SubGrp `  G )
)
4 subgrcl 13309 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5 eqger.x . . . . . . . 8  |-  X  =  ( Base `  G
)
65subgss 13304 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
74, 6jca 306 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G  e.  Grp  /\  Y  C_  X ) )
8 eqger.r . . . . . . . 8  |-  .~  =  ( G ~QG  Y )
9 eqid 2196 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
105, 8, 9eqglact 13355 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  x  e.  X )  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
11103expa 1205 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  x  e.  X
)  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
127, 11sylan 283 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
135, 8eqger 13354 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)
14 basfn 12736 . . . . . . . . . 10  |-  Base  Fn  _V
154elexd 2776 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  _V )
16 funfvex 5575 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1716funfni 5358 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1814, 15, 17sylancr 414 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  ( Base `  G )  e.  _V )
195, 18eqeltrid 2283 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  X  e.  _V )
20 erex 6616 . . . . . . . 8  |-  (  .~  Er  X  ->  ( X  e.  _V  ->  .~  e.  _V ) )
2113, 19, 20sylc 62 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  e.  _V )
22 ecexg 6596 . . . . . . 7  |-  (  .~  e.  _V  ->  [ x ]  .~  e.  _V )
2321, 22syl 14 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  [ x ]  .~  e.  _V )
2423adantr 276 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  [ x ]  .~  e.  _V )
2512, 24eqeltrrd 2274 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y )  e.  _V )
26 eqid 2196 . . . . . . . . 9  |-  ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) )  =  ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) )
2726, 5, 9grplactf1o 13235 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `
 x ) : X -1-1-onto-> X )
2826, 5grplactfval 13233 . . . . . . . . . 10  |-  ( x  e.  X  ->  (
( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `  x
)  =  ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) )
2928adantl 277 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `
 x )  =  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) )
3029f1oeq1d 5499 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) ) `  x ) : X -1-1-onto-> X  <->  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-onto-> X ) )
3127, 30mpbid 147 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-onto-> X )
324, 31sylan 283 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-onto-> X )
33 f1of1 5503 . . . . . 6  |-  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-onto-> X  ->  ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-> X )
3432, 33syl 14 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-> X )
356adantr 276 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  C_  X )
36 f1ores 5519 . . . . 5  |-  ( ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-> X  /\  Y  C_  X )  ->  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )  |`  Y ) : Y -1-1-onto-> (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
3734, 35, 36syl2anc 411 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) )  |`  Y ) : Y -1-1-onto-> ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
38 f1oen2g 6814 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y )  e.  _V  /\  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) )  |`  Y ) : Y -1-1-onto-> ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )  ->  Y  ~~  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
393, 25, 37, 38syl3anc 1249 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  ~~  ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
4039, 12breqtrrd 4061 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  ~~  [ x ]  .~  )
411, 2, 40ectocld 6660 1  |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   class class class wbr 4033    |-> cmpt 4094    |` cres 4665   "cima 4666    Fn wfn 5253   -1-1->wf1 5255   -1-1-onto->wf1o 5257   ` cfv 5258  (class class class)co 5922    Er wer 6589   [cec 6590   /.cqs 6591    ~~ cen 6797   Basecbs 12678   +g cplusg 12755   Grpcgrp 13132  SubGrpcsubg 13297   ~QG cqg 13299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-ec 6594  df-qs 6598  df-en 6800  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-0g 12929  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-eqg 13302
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator