ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqgen Unicode version

Theorem eqgen 13678
Description: Each coset is equipotent to the subgroup itself (which is also the coset containing the identity). (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
eqger.x  |-  X  =  ( Base `  G
)
eqger.r  |-  .~  =  ( G ~QG  Y )
Assertion
Ref Expression
eqgen  |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )

Proof of Theorem eqgen
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . 2  |-  ( X /.  .~  )  =  ( X /.  .~  )
2 breq2 4063 . 2  |-  ( [ x ]  .~  =  A  ->  ( Y  ~~  [ x ]  .~  <->  Y  ~~  A ) )
3 simpl 109 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  e.  (SubGrp `  G )
)
4 subgrcl 13630 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  Grp )
5 eqger.x . . . . . . . 8  |-  X  =  ( Base `  G
)
65subgss 13625 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  Y  C_  X
)
74, 6jca 306 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  ( G  e.  Grp  /\  Y  C_  X ) )
8 eqger.r . . . . . . . 8  |-  .~  =  ( G ~QG  Y )
9 eqid 2207 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
105, 8, 9eqglact 13676 . . . . . . 7  |-  ( ( G  e.  Grp  /\  Y  C_  X  /\  x  e.  X )  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
11103expa 1206 . . . . . 6  |-  ( ( ( G  e.  Grp  /\  Y  C_  X )  /\  x  e.  X
)  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
127, 11sylan 283 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  [ x ]  .~  =  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
135, 8eqger 13675 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  Er  X
)
14 basfn 13005 . . . . . . . . . 10  |-  Base  Fn  _V
154elexd 2790 . . . . . . . . . 10  |-  ( Y  e.  (SubGrp `  G
)  ->  G  e.  _V )
16 funfvex 5616 . . . . . . . . . . 11  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1716funfni 5395 . . . . . . . . . 10  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1814, 15, 17sylancr 414 . . . . . . . . 9  |-  ( Y  e.  (SubGrp `  G
)  ->  ( Base `  G )  e.  _V )
195, 18eqeltrid 2294 . . . . . . . 8  |-  ( Y  e.  (SubGrp `  G
)  ->  X  e.  _V )
20 erex 6667 . . . . . . . 8  |-  (  .~  Er  X  ->  ( X  e.  _V  ->  .~  e.  _V ) )
2113, 19, 20sylc 62 . . . . . . 7  |-  ( Y  e.  (SubGrp `  G
)  ->  .~  e.  _V )
22 ecexg 6647 . . . . . . 7  |-  (  .~  e.  _V  ->  [ x ]  .~  e.  _V )
2321, 22syl 14 . . . . . 6  |-  ( Y  e.  (SubGrp `  G
)  ->  [ x ]  .~  e.  _V )
2423adantr 276 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  [ x ]  .~  e.  _V )
2512, 24eqeltrrd 2285 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y )  e.  _V )
26 eqid 2207 . . . . . . . . 9  |-  ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) )  =  ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) )
2726, 5, 9grplactf1o 13550 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `
 x ) : X -1-1-onto-> X )
2826, 5grplactfval 13548 . . . . . . . . . 10  |-  ( x  e.  X  ->  (
( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `  x
)  =  ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) )
2928adantl 277 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G ) z ) ) ) `
 x )  =  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) )
3029f1oeq1d 5539 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( ( ( y  e.  X  |->  ( z  e.  X  |->  ( y ( +g  `  G
) z ) ) ) `  x ) : X -1-1-onto-> X  <->  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-onto-> X ) )
3127, 30mpbid 147 . . . . . . 7  |-  ( ( G  e.  Grp  /\  x  e.  X )  ->  ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-onto-> X )
324, 31sylan 283 . . . . . 6  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-onto-> X )
33 f1of1 5543 . . . . . 6  |-  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-onto-> X  ->  ( z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-> X )
3432, 33syl 14 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
z  e.  X  |->  ( x ( +g  `  G
) z ) ) : X -1-1-> X )
356adantr 276 . . . . 5  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  C_  X )
36 f1ores 5559 . . . . 5  |-  ( ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) : X -1-1-> X  /\  Y  C_  X )  ->  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )  |`  Y ) : Y -1-1-onto-> (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
3734, 35, 36syl2anc 411 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) )  |`  Y ) : Y -1-1-onto-> ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
38 f1oen2g 6869 . . . 4  |-  ( ( Y  e.  (SubGrp `  G )  /\  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y )  e.  _V  /\  (
( z  e.  X  |->  ( x ( +g  `  G ) z ) )  |`  Y ) : Y -1-1-onto-> ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )  ->  Y  ~~  ( ( z  e.  X  |->  ( x ( +g  `  G
) z ) )
" Y ) )
393, 25, 37, 38syl3anc 1250 . . 3  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  ~~  ( ( z  e.  X  |->  ( x ( +g  `  G ) z ) ) " Y ) )
4039, 12breqtrrd 4087 . 2  |-  ( ( Y  e.  (SubGrp `  G )  /\  x  e.  X )  ->  Y  ~~  [ x ]  .~  )
411, 2, 40ectocld 6711 1  |-  ( ( Y  e.  (SubGrp `  G )  /\  A  e.  ( X /.  .~  ) )  ->  Y  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   class class class wbr 4059    |-> cmpt 4121    |` cres 4695   "cima 4696    Fn wfn 5285   -1-1->wf1 5287   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967    Er wer 6640   [cec 6641   /.cqs 6642    ~~ cen 6848   Basecbs 12947   +g cplusg 13024   Grpcgrp 13447  SubGrpcsubg 13618   ~QG cqg 13620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-er 6643  df-ec 6645  df-qs 6649  df-en 6851  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621  df-eqg 13623
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator