Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1oeq123d | Unicode version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | |
f1eq123d.2 | |
f1eq123d.3 |
Ref | Expression |
---|---|
f1oeq123d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 | |
2 | f1oeq1 5418 | . . 3 | |
3 | 1, 2 | syl 14 | . 2 |
4 | f1eq123d.2 | . . 3 | |
5 | f1oeq2 5419 | . . 3 | |
6 | 4, 5 | syl 14 | . 2 |
7 | f1eq123d.3 | . . 3 | |
8 | f1oeq3 5420 | . . 3 | |
9 | 7, 8 | syl 14 | . 2 |
10 | 3, 6, 9 | 3bitrd 213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1342 wf1o 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1434 ax-7 1435 ax-gen 1436 ax-ie1 1480 ax-ie2 1481 ax-8 1491 ax-10 1492 ax-11 1493 ax-i12 1494 ax-bndl 1496 ax-4 1497 ax-17 1513 ax-i9 1517 ax-ial 1521 ax-i5r 1522 ax-ext 2146 |
This theorem depends on definitions: df-bi 116 df-3an 969 df-tru 1345 df-nf 1448 df-sb 1750 df-clab 2151 df-cleq 2157 df-clel 2160 df-nfc 2295 df-v 2726 df-un 3118 df-in 3120 df-ss 3127 df-sn 3579 df-pr 3580 df-op 3582 df-br 3980 df-opab 4041 df-rel 4608 df-cnv 4609 df-co 4610 df-dm 4611 df-rn 4612 df-fun 5187 df-fn 5188 df-f 5189 df-f1 5190 df-fo 5191 df-f1o 5192 |
This theorem is referenced by: f1oprg 5473 ennnfonelemhf1o 12340 |
Copyright terms: Public domain | W3C validator |