ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1resf1 Unicode version

Theorem f1resf1 5450
Description: The restriction of an injective function is injective. (Contributed by AV, 28-Jun-2022.)
Assertion
Ref Expression
f1resf1  |-  ( ( ( F : A -1-1-> B  /\  C  C_  A
)  /\  ( F  |`  C ) : C --> D )  ->  ( F  |`  C ) : C -1-1-> D )

Proof of Theorem f1resf1
StepHypRef Expression
1 f1ssres 5449 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )
2 f1ff1 5448 . 2  |-  ( ( ( F  |`  C ) : C -1-1-> B  /\  ( F  |`  C ) : C --> D )  ->  ( F  |`  C ) : C -1-1-> D )
31, 2sylan 283 1  |-  ( ( ( F : A -1-1-> B  /\  C  C_  A
)  /\  ( F  |`  C ) : C --> D )  ->  ( F  |`  C ) : C -1-1-> D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    C_ wss 3144    |` cres 4646   -->wf 5231   -1-1->wf1 5232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-opab 4080  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator