ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ssres Unicode version

Theorem f1ssres 5402
Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 5393 . . 3  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 fssres 5363 . . 3  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
31, 2sylan 281 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C --> B )
4 df-f1 5193 . . . . 5  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
54simprbi 273 . . . 4  |-  ( F : A -1-1-> B  ->  Fun  `' F )
6 funres11 5260 . . . 4  |-  ( Fun  `' F  ->  Fun  `' ( F  |`  C ) )
75, 6syl 14 . . 3  |-  ( F : A -1-1-> B  ->  Fun  `' ( F  |`  C ) )
87adantr 274 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  Fun  `' ( F  |`  C ) )
9 df-f1 5193 . 2  |-  ( ( F  |`  C ) : C -1-1-> B  <->  ( ( F  |`  C ) : C --> B  /\  Fun  `' ( F  |`  C )
) )
103, 8, 9sylanbrc 414 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    C_ wss 3116   `'ccnv 4603    |` cres 4606   Fun wfun 5182   -->wf 5184   -1-1->wf1 5185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193
This theorem is referenced by:  f1resf1  5403  f1ores  5447
  Copyright terms: Public domain W3C validator