ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ssres Unicode version

Theorem f1ssres 5410
Description: A function that is one-to-one is also one-to-one on any subclass of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 5401 . . 3  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 fssres 5371 . . 3  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
31, 2sylan 281 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C --> B )
4 df-f1 5201 . . . . 5  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
54simprbi 273 . . . 4  |-  ( F : A -1-1-> B  ->  Fun  `' F )
6 funres11 5268 . . . 4  |-  ( Fun  `' F  ->  Fun  `' ( F  |`  C ) )
75, 6syl 14 . . 3  |-  ( F : A -1-1-> B  ->  Fun  `' ( F  |`  C ) )
87adantr 274 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  Fun  `' ( F  |`  C ) )
9 df-f1 5201 . 2  |-  ( ( F  |`  C ) : C -1-1-> B  <->  ( ( F  |`  C ) : C --> B  /\  Fun  `' ( F  |`  C )
) )
103, 8, 9sylanbrc 415 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    C_ wss 3121   `'ccnv 4608    |` cres 4611   Fun wfun 5190   -->wf 5192   -1-1->wf1 5193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-br 3988  df-opab 4049  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201
This theorem is referenced by:  f1resf1  5411  f1ores  5455
  Copyright terms: Public domain W3C validator