Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > f1cnvcnv | Unicode version |
Description: Two ways to express that a set (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
f1cnvcnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 5193 | . 2 | |
2 | dffn2 5339 | . . . 4 | |
3 | dmcnvcnv 4828 | . . . . 5 | |
4 | df-fn 5191 | . . . . 5 | |
5 | 3, 4 | mpbiran2 931 | . . . 4 |
6 | 2, 5 | bitr3i 185 | . . 3 |
7 | relcnv 4982 | . . . . 5 | |
8 | dfrel2 5054 | . . . . 5 | |
9 | 7, 8 | mpbi 144 | . . . 4 |
10 | 9 | funeqi 5209 | . . 3 |
11 | 6, 10 | anbi12ci 457 | . 2 |
12 | 1, 11 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 cvv 2726 ccnv 4603 cdm 4604 wrel 4609 wfun 5182 wfn 5183 wf 5184 wf1 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |