ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1cnvcnv Unicode version

Theorem f1cnvcnv 5471
Description: Two ways to express that a set  A (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 5260 . 2  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A ) )
2 dffn2 5406 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  `' `' A : dom  A --> _V )
3 dmcnvcnv 4887 . . . . 5  |-  dom  `' `' A  =  dom  A
4 df-fn 5258 . . . . 5  |-  ( `' `' A  Fn  dom  A  <-> 
( Fun  `' `' A  /\  dom  `' `' A  =  dom  A ) )
53, 4mpbiran2 943 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  Fun  `' `' A )
62, 5bitr3i 186 . . 3  |-  ( `' `' A : dom  A --> _V 
<->  Fun  `' `' A
)
7 relcnv 5044 . . . . 5  |-  Rel  `' A
8 dfrel2 5117 . . . . 5  |-  ( Rel  `' A  <->  `' `' `' A  =  `' A )
97, 8mpbi 145 . . . 4  |-  `' `' `' A  =  `' A
109funeqi 5276 . . 3  |-  ( Fun  `' `' `' A  <->  Fun  `' A )
116, 10anbi12ci 461 . 2  |-  ( ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A )  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
121, 11bitri 184 1  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   _Vcvv 2760   `'ccnv 4659   dom cdm 4660   Rel wrel 4665   Fun wfun 5249    Fn wfn 5250   -->wf 5251   -1-1->wf1 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator