ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1cnvcnv Unicode version

Theorem f1cnvcnv 5414
Description: Two ways to express that a set  A (not necessarily a function) is one-to-one. Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one. We do not introduce a separate notation since we rarely use it. (Contributed by NM, 13-Aug-2004.)
Assertion
Ref Expression
f1cnvcnv  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )

Proof of Theorem f1cnvcnv
StepHypRef Expression
1 df-f1 5203 . 2  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A ) )
2 dffn2 5349 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  `' `' A : dom  A --> _V )
3 dmcnvcnv 4835 . . . . 5  |-  dom  `' `' A  =  dom  A
4 df-fn 5201 . . . . 5  |-  ( `' `' A  Fn  dom  A  <-> 
( Fun  `' `' A  /\  dom  `' `' A  =  dom  A ) )
53, 4mpbiran2 936 . . . 4  |-  ( `' `' A  Fn  dom  A  <->  Fun  `' `' A )
62, 5bitr3i 185 . . 3  |-  ( `' `' A : dom  A --> _V 
<->  Fun  `' `' A
)
7 relcnv 4989 . . . . 5  |-  Rel  `' A
8 dfrel2 5061 . . . . 5  |-  ( Rel  `' A  <->  `' `' `' A  =  `' A )
97, 8mpbi 144 . . . 4  |-  `' `' `' A  =  `' A
109funeqi 5219 . . 3  |-  ( Fun  `' `' `' A  <->  Fun  `' A )
116, 10anbi12ci 458 . 2  |-  ( ( `' `' A : dom  A --> _V  /\  Fun  `' `' `' A )  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
121, 11bitri 183 1  |-  ( `' `' A : dom  A -1-1-> _V  <->  ( Fun  `' A  /\  Fun  `' `' A ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1348   _Vcvv 2730   `'ccnv 4610   dom cdm 4611   Rel wrel 4616   Fun wfun 5192    Fn wfn 5193   -->wf 5194   -1-1->wf1 5195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator