ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  feq123d GIF version

Theorem feq123d 5464
Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
feq12d.1 (𝜑𝐹 = 𝐺)
feq12d.2 (𝜑𝐴 = 𝐵)
feq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
feq123d (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))

Proof of Theorem feq123d
StepHypRef Expression
1 feq12d.1 . . 3 (𝜑𝐹 = 𝐺)
2 feq12d.2 . . 3 (𝜑𝐴 = 𝐵)
31, 2feq12d 5463 . 2 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
4 feq123d.3 . . 3 (𝜑𝐶 = 𝐷)
5 feq3 5458 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵𝐶𝐺:𝐵𝐷))
64, 5syl 14 . 2 (𝜑 → (𝐺:𝐵𝐶𝐺:𝐵𝐷))
73, 6bitrd 188 1 (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wf 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-fun 5320  df-fn 5321  df-f 5322
This theorem is referenced by:  feq123  5465  feq23d  5469  csbwrdg  11109  isuhgrm  15879  uhgreq12g  15884  isuhgropm  15889  uhgrun  15894  isupgren  15903  upgrop  15912  isumgren  15913  upgrun  15932  umgrun  15934
  Copyright terms: Public domain W3C validator