| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > feq123d | GIF version | ||
| Description: Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| feq12d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| feq12d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| feq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| feq123d | ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq12d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | feq12d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 1, 2 | feq12d 5463 | . 2 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐶)) |
| 4 | feq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 5 | feq3 5458 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) | |
| 6 | 4, 5 | syl 14 | . 2 ⊢ (𝜑 → (𝐺:𝐵⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
| 7 | 3, 6 | bitrd 188 | 1 ⊢ (𝜑 → (𝐹:𝐴⟶𝐶 ↔ 𝐺:𝐵⟶𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ⟶wf 5314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-fun 5320 df-fn 5321 df-f 5322 |
| This theorem is referenced by: feq123 5465 feq23d 5469 csbwrdg 11109 isuhgrm 15879 uhgreq12g 15884 isuhgropm 15889 uhgrun 15894 isupgren 15903 upgrop 15912 isumgren 15913 upgrun 15932 umgrun 15934 |
| Copyright terms: Public domain | W3C validator |