ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fneq12 Unicode version

Theorem fneq12 5310
Description: Equality theorem for function predicate with domain. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Assertion
Ref Expression
fneq12  |-  ( ( F  =  G  /\  A  =  B )  ->  ( F  Fn  A  <->  G  Fn  B ) )

Proof of Theorem fneq12
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( F  =  G  /\  A  =  B )  ->  F  =  G )
2 simpr 110 . 2  |-  ( ( F  =  G  /\  A  =  B )  ->  A  =  B )
31, 2fneq12d 5309 1  |-  ( ( F  =  G  /\  A  =  B )  ->  ( F  Fn  A  <->  G  Fn  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    Fn wfn 5212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2740  df-un 3134  df-in 3136  df-ss 3143  df-sn 3599  df-pr 3600  df-op 3602  df-br 4005  df-opab 4066  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-fun 5219  df-fn 5220
This theorem is referenced by:  tfrlem3ag  6310  tfrlem3a  6311  tfr1onlem3ag  6338  frecfnom  6402
  Copyright terms: Public domain W3C validator