ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fac1 Unicode version

Theorem fac1 10198
Description: The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
fac1  |-  ( ! `
 1 )  =  1

Proof of Theorem fac1
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 8494 . . 3  |-  1  e.  NN
2 facnn 10196 . . 3  |-  ( 1  e.  NN  ->  ( ! `  1 )  =  (  seq 1
(  x.  ,  _I  ,  CC ) `  1
) )
31, 2ax-mp 7 . 2  |-  ( ! `
 1 )  =  (  seq 1 (  x.  ,  _I  ,  CC ) `  1 )
4 1zzd 8838 . . . 4  |-  ( T. 
->  1  e.  ZZ )
5 fvi 5374 . . . . . . . 8  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  =  f )
65eleq1d 2157 . . . . . . 7  |-  ( f  e.  ( ZZ>= `  1
)  ->  ( (  _I  `  f )  e.  ( ZZ>= `  1 )  <->  f  e.  ( ZZ>= `  1
) ) )
76ibir 176 . . . . . 6  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  (
ZZ>= `  1 ) )
8 eluzelcn 9091 . . . . . 6  |-  ( (  _I  `  f )  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  CC )
97, 8syl 14 . . . . 5  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  CC )
109adantl 272 . . . 4  |-  ( ( T.  /\  f  e.  ( ZZ>= `  1 )
)  ->  (  _I  `  f )  e.  CC )
11 mulcl 7530 . . . . 5  |-  ( ( f  e.  CC  /\  g  e.  CC )  ->  ( f  x.  g
)  e.  CC )
1211adantl 272 . . . 4  |-  ( ( T.  /\  ( f  e.  CC  /\  g  e.  CC ) )  -> 
( f  x.  g
)  e.  CC )
134, 10, 12iseq1 9936 . . 3  |-  ( T. 
->  (  seq 1
(  x.  ,  _I  ,  CC ) `  1
)  =  (  _I 
`  1 ) )
1413mptru 1299 . 2  |-  (  seq 1 (  x.  ,  _I  ,  CC ) ` 
1 )  =  (  _I  `  1 )
15 fvi 5374 . . 3  |-  ( 1  e.  NN  ->  (  _I  `  1 )  =  1 )
161, 15ax-mp 7 . 2  |-  (  _I 
`  1 )  =  1
173, 14, 163eqtri 2113 1  |-  ( ! `
 1 )  =  1
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1290   T. wtru 1291    e. wcel 1439    _I cid 4124   ` cfv 5028  (class class class)co 5666   CCcc 7409   1c1 7412    x. cmul 7416   NNcn 8483   ZZ>=cuz 9080    seqcseq4 9912   !cfa 10194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812  df-uz 9081  df-iseq 9914  df-fac 10195
This theorem is referenced by:  facp1  10199  fac2  10200  bcn1  10227  ege2le3  11022  ef4p  11045  efgt1p2  11046  efgt1p  11047
  Copyright terms: Public domain W3C validator