ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fac1 Unicode version

Theorem fac1 10740
Description: The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
fac1  |-  ( ! `
 1 )  =  1

Proof of Theorem fac1
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 8959 . . 3  |-  1  e.  NN
2 facnn 10738 . . 3  |-  ( 1  e.  NN  ->  ( ! `  1 )  =  (  seq 1
(  x.  ,  _I  ) `  1 )
)
31, 2ax-mp 5 . 2  |-  ( ! `
 1 )  =  (  seq 1 (  x.  ,  _I  ) `  1 )
4 1zzd 9309 . . . 4  |-  ( T. 
->  1  e.  ZZ )
5 fvi 5593 . . . . . . . 8  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  =  f )
65eleq1d 2258 . . . . . . 7  |-  ( f  e.  ( ZZ>= `  1
)  ->  ( (  _I  `  f )  e.  ( ZZ>= `  1 )  <->  f  e.  ( ZZ>= `  1
) ) )
76ibir 177 . . . . . 6  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  (
ZZ>= `  1 ) )
8 eluzelcn 9568 . . . . . 6  |-  ( (  _I  `  f )  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  CC )
97, 8syl 14 . . . . 5  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  CC )
109adantl 277 . . . 4  |-  ( ( T.  /\  f  e.  ( ZZ>= `  1 )
)  ->  (  _I  `  f )  e.  CC )
11 mulcl 7967 . . . . 5  |-  ( ( f  e.  CC  /\  g  e.  CC )  ->  ( f  x.  g
)  e.  CC )
1211adantl 277 . . . 4  |-  ( ( T.  /\  ( f  e.  CC  /\  g  e.  CC ) )  -> 
( f  x.  g
)  e.  CC )
134, 10, 12seq3-1 10490 . . 3  |-  ( T. 
->  (  seq 1
(  x.  ,  _I  ) `  1 )  =  (  _I  `  1
) )
1413mptru 1373 . 2  |-  (  seq 1 (  x.  ,  _I  ) `  1 )  =  (  _I  ` 
1 )
15 fvi 5593 . . 3  |-  ( 1  e.  NN  ->  (  _I  `  1 )  =  1 )
161, 15ax-mp 5 . 2  |-  (  _I 
`  1 )  =  1
173, 14, 163eqtri 2214 1  |-  ( ! `
 1 )  =  1
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364   T. wtru 1365    e. wcel 2160    _I cid 4306   ` cfv 5235  (class class class)co 5895   CCcc 7838   1c1 7841    x. cmul 7845   NNcn 8948   ZZ>=cuz 9557    seqcseq 10475   !cfa 10736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-inn 8949  df-n0 9206  df-z 9283  df-uz 9558  df-seqfrec 10476  df-fac 10737
This theorem is referenced by:  facp1  10741  fac2  10742  bcn1  10769  fprodfac  11654  ege2le3  11710  ef4p  11733  efgt1p2  11734  efgt1p  11735  dveflem  14639
  Copyright terms: Public domain W3C validator