ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpm2r Unicode version

Theorem elpm2r 6776
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
Assertion
Ref Expression
elpm2r  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( F : C --> A  /\  C  C_  B ) )  ->  F  e.  ( A  ^pm  B ) )

Proof of Theorem elpm2r
StepHypRef Expression
1 fdm 5451 . . . . . . 7  |-  ( F : C --> A  ->  dom  F  =  C )
21feq2d 5433 . . . . . 6  |-  ( F : C --> A  -> 
( F : dom  F --> A  <->  F : C --> A ) )
31sseq1d 3230 . . . . . 6  |-  ( F : C --> A  -> 
( dom  F  C_  B  <->  C 
C_  B ) )
42, 3anbi12d 473 . . . . 5  |-  ( F : C --> A  -> 
( ( F : dom  F --> A  /\  dom  F 
C_  B )  <->  ( F : C --> A  /\  C  C_  B ) ) )
54adantr 276 . . . 4  |-  ( ( F : C --> A  /\  C  C_  B )  -> 
( ( F : dom  F --> A  /\  dom  F 
C_  B )  <->  ( F : C --> A  /\  C  C_  B ) ) )
65ibir 177 . . 3  |-  ( ( F : C --> A  /\  C  C_  B )  -> 
( F : dom  F --> A  /\  dom  F  C_  B ) )
7 elpm2g 6775 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( F  e.  ( A  ^pm  B )  <->  ( F : dom  F --> A  /\  dom  F  C_  B ) ) )
86, 7imbitrrid 156 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ( F : C
--> A  /\  C  C_  B )  ->  F  e.  ( A  ^pm  B
) ) )
98imp 124 1  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( F : C --> A  /\  C  C_  B ) )  ->  F  e.  ( A  ^pm  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2178    C_ wss 3174   dom cdm 4693   -->wf 5286  (class class class)co 5967    ^pm cpm 6759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pm 6761
This theorem is referenced by:  fpmg  6784  pmresg  6786  ennnfonelemg  12889  lmbrf  14802  ellimc3apf  15247  dvfvalap  15268  dvmulxxbr  15289  dvaddxx  15290  dvmulxx  15291  dviaddf  15292  dvimulf  15293  dvcoapbr  15294  dvmptclx  15305
  Copyright terms: Public domain W3C validator