Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpm2r | Unicode version |
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
Ref | Expression |
---|---|
elpm2r |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 5343 | . . . . . . 7 | |
2 | 1 | feq2d 5325 | . . . . . 6 |
3 | 1 | sseq1d 3171 | . . . . . 6 |
4 | 2, 3 | anbi12d 465 | . . . . 5 |
5 | 4 | adantr 274 | . . . 4 |
6 | 5 | ibir 176 | . . 3 |
7 | elpm2g 6631 | . . 3 | |
8 | 6, 7 | syl5ibr 155 | . 2 |
9 | 8 | imp 123 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2136 wss 3116 cdm 4604 wf 5184 (class class class)co 5842 cpm 6615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pm 6617 |
This theorem is referenced by: fpmg 6640 pmresg 6642 ennnfonelemg 12336 lmbrf 12855 ellimc3apf 13269 dvfvalap 13290 dvmulxxbr 13306 dvaddxx 13307 dvmulxx 13308 dviaddf 13309 dvimulf 13310 dvcoapbr 13311 dvmptclx 13320 |
Copyright terms: Public domain | W3C validator |