ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnacl Unicode version

Theorem nnacl 6566
Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnacl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )

Proof of Theorem nnacl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5952 . . . . 5  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
21eleq1d 2274 . . . 4  |-  ( x  =  B  ->  (
( A  +o  x
)  e.  om  <->  ( A  +o  B )  e.  om ) )
32imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  +o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  +o  B )  e.  om ) ) )
4 oveq2 5952 . . . . 5  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
54eleq1d 2274 . . . 4  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  om  <->  ( A  +o  (/) )  e.  om ) )
6 oveq2 5952 . . . . 5  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
76eleq1d 2274 . . . 4  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  om  <->  ( A  +o  y )  e.  om ) )
8 oveq2 5952 . . . . 5  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
98eleq1d 2274 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  om  <->  ( A  +o  suc  y
)  e.  om )
)
10 nna0 6560 . . . . . 6  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1110eleq1d 2274 . . . . 5  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e. 
om 
<->  A  e.  om )
)
1211ibir 177 . . . 4  |-  ( A  e.  om  ->  ( A  +o  (/) )  e.  om )
13 peano2 4643 . . . . . 6  |-  ( ( A  +o  y )  e.  om  ->  suc  ( A  +o  y
)  e.  om )
14 nnasuc 6562 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
1514eleq1d 2274 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  +o  suc  y )  e.  om  <->  suc  ( A  +o  y
)  e.  om )
)
1613, 15imbitrrid 156 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  +o  y )  e.  om  ->  ( A  +o  suc  y )  e.  om ) )
1716expcom 116 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  +o  y
)  e.  om  ->  ( A  +o  suc  y
)  e.  om )
) )
185, 7, 9, 12, 17finds2 4649 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  +o  x )  e.  om ) )
193, 18vtoclga 2839 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  +o  B )  e.  om ) )
2019impcom 125 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   (/)c0 3460   suc csuc 4412   omcom 4638  (class class class)co 5944    +o coa 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-oadd 6506
This theorem is referenced by:  nnmcl  6567  nnacli  6568  nnaass  6571  nndi  6572  nndir  6576  nnaordi  6594  nnaord  6595  nnaword  6597  addclpi  7440  nnppipi  7456  archnqq  7530  addcmpblnq0  7556  addclnq0  7564  nnanq0  7571  distrnq0  7572  addassnq0lemcl  7574  prarloclemlt  7606  prarloclemlo  7607  prarloclem3  7610  omgadd  10947  hashunlem  10949  hashun  10950
  Copyright terms: Public domain W3C validator