| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnacl | Unicode version | ||
| Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnacl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5930 |
. . . . 5
| |
| 2 | 1 | eleq1d 2265 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 5930 |
. . . . 5
| |
| 5 | 4 | eleq1d 2265 |
. . . 4
|
| 6 | oveq2 5930 |
. . . . 5
| |
| 7 | 6 | eleq1d 2265 |
. . . 4
|
| 8 | oveq2 5930 |
. . . . 5
| |
| 9 | 8 | eleq1d 2265 |
. . . 4
|
| 10 | nna0 6532 |
. . . . . 6
| |
| 11 | 10 | eleq1d 2265 |
. . . . 5
|
| 12 | 11 | ibir 177 |
. . . 4
|
| 13 | peano2 4631 |
. . . . . 6
| |
| 14 | nnasuc 6534 |
. . . . . . 7
| |
| 15 | 14 | eleq1d 2265 |
. . . . . 6
|
| 16 | 13, 15 | imbitrrid 156 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 5, 7, 9, 12, 17 | finds2 4637 |
. . 3
|
| 19 | 3, 18 | vtoclga 2830 |
. 2
|
| 20 | 19 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-oadd 6478 |
| This theorem is referenced by: nnmcl 6539 nnacli 6540 nnaass 6543 nndi 6544 nndir 6548 nnaordi 6566 nnaord 6567 nnaword 6569 addclpi 7394 nnppipi 7410 archnqq 7484 addcmpblnq0 7510 addclnq0 7518 nnanq0 7525 distrnq0 7526 addassnq0lemcl 7528 prarloclemlt 7560 prarloclemlo 7561 prarloclem3 7564 omgadd 10894 hashunlem 10896 hashun 10897 |
| Copyright terms: Public domain | W3C validator |