ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnacl Unicode version

Theorem nnacl 6483
Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnacl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )

Proof of Theorem nnacl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5885 . . . . 5  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
21eleq1d 2246 . . . 4  |-  ( x  =  B  ->  (
( A  +o  x
)  e.  om  <->  ( A  +o  B )  e.  om ) )
32imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  +o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  +o  B )  e.  om ) ) )
4 oveq2 5885 . . . . 5  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
54eleq1d 2246 . . . 4  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  om  <->  ( A  +o  (/) )  e.  om ) )
6 oveq2 5885 . . . . 5  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
76eleq1d 2246 . . . 4  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  om  <->  ( A  +o  y )  e.  om ) )
8 oveq2 5885 . . . . 5  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
98eleq1d 2246 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  om  <->  ( A  +o  suc  y
)  e.  om )
)
10 nna0 6477 . . . . . 6  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1110eleq1d 2246 . . . . 5  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e. 
om 
<->  A  e.  om )
)
1211ibir 177 . . . 4  |-  ( A  e.  om  ->  ( A  +o  (/) )  e.  om )
13 peano2 4596 . . . . . 6  |-  ( ( A  +o  y )  e.  om  ->  suc  ( A  +o  y
)  e.  om )
14 nnasuc 6479 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
1514eleq1d 2246 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  +o  suc  y )  e.  om  <->  suc  ( A  +o  y
)  e.  om )
)
1613, 15imbitrrid 156 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  +o  y )  e.  om  ->  ( A  +o  suc  y )  e.  om ) )
1716expcom 116 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  +o  y
)  e.  om  ->  ( A  +o  suc  y
)  e.  om )
) )
185, 7, 9, 12, 17finds2 4602 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  +o  x )  e.  om ) )
193, 18vtoclga 2805 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  +o  B )  e.  om ) )
2019impcom 125 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   (/)c0 3424   suc csuc 4367   omcom 4591  (class class class)co 5877    +o coa 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-oadd 6423
This theorem is referenced by:  nnmcl  6484  nnacli  6485  nnaass  6488  nndi  6489  nndir  6493  nnaordi  6511  nnaord  6512  nnaword  6514  addclpi  7328  nnppipi  7344  archnqq  7418  addcmpblnq0  7444  addclnq0  7452  nnanq0  7459  distrnq0  7460  addassnq0lemcl  7462  prarloclemlt  7494  prarloclemlo  7495  prarloclem3  7498  omgadd  10784  hashunlem  10786  hashun  10787
  Copyright terms: Public domain W3C validator