ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnacl Unicode version

Theorem nnacl 6535
Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnacl  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )

Proof of Theorem nnacl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5927 . . . . 5  |-  ( x  =  B  ->  ( A  +o  x )  =  ( A  +o  B
) )
21eleq1d 2262 . . . 4  |-  ( x  =  B  ->  (
( A  +o  x
)  e.  om  <->  ( A  +o  B )  e.  om ) )
32imbi2d 230 . . 3  |-  ( x  =  B  ->  (
( A  e.  om  ->  ( A  +o  x
)  e.  om )  <->  ( A  e.  om  ->  ( A  +o  B )  e.  om ) ) )
4 oveq2 5927 . . . . 5  |-  ( x  =  (/)  ->  ( A  +o  x )  =  ( A  +o  (/) ) )
54eleq1d 2262 . . . 4  |-  ( x  =  (/)  ->  ( ( A  +o  x )  e.  om  <->  ( A  +o  (/) )  e.  om ) )
6 oveq2 5927 . . . . 5  |-  ( x  =  y  ->  ( A  +o  x )  =  ( A  +o  y
) )
76eleq1d 2262 . . . 4  |-  ( x  =  y  ->  (
( A  +o  x
)  e.  om  <->  ( A  +o  y )  e.  om ) )
8 oveq2 5927 . . . . 5  |-  ( x  =  suc  y  -> 
( A  +o  x
)  =  ( A  +o  suc  y ) )
98eleq1d 2262 . . . 4  |-  ( x  =  suc  y  -> 
( ( A  +o  x )  e.  om  <->  ( A  +o  suc  y
)  e.  om )
)
10 nna0 6529 . . . . . 6  |-  ( A  e.  om  ->  ( A  +o  (/) )  =  A )
1110eleq1d 2262 . . . . 5  |-  ( A  e.  om  ->  (
( A  +o  (/) )  e. 
om 
<->  A  e.  om )
)
1211ibir 177 . . . 4  |-  ( A  e.  om  ->  ( A  +o  (/) )  e.  om )
13 peano2 4628 . . . . . 6  |-  ( ( A  +o  y )  e.  om  ->  suc  ( A  +o  y
)  e.  om )
14 nnasuc 6531 . . . . . . 7  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( A  +o  suc  y )  =  suc  ( A  +o  y
) )
1514eleq1d 2262 . . . . . 6  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  +o  suc  y )  e.  om  <->  suc  ( A  +o  y
)  e.  om )
)
1613, 15imbitrrid 156 . . . . 5  |-  ( ( A  e.  om  /\  y  e.  om )  ->  ( ( A  +o  y )  e.  om  ->  ( A  +o  suc  y )  e.  om ) )
1716expcom 116 . . . 4  |-  ( y  e.  om  ->  ( A  e.  om  ->  ( ( A  +o  y
)  e.  om  ->  ( A  +o  suc  y
)  e.  om )
) )
185, 7, 9, 12, 17finds2 4634 . . 3  |-  ( x  e.  om  ->  ( A  e.  om  ->  ( A  +o  x )  e.  om ) )
193, 18vtoclga 2827 . 2  |-  ( B  e.  om  ->  ( A  e.  om  ->  ( A  +o  B )  e.  om ) )
2019impcom 125 1  |-  ( ( A  e.  om  /\  B  e.  om )  ->  ( A  +o  B
)  e.  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   (/)c0 3447   suc csuc 4397   omcom 4623  (class class class)co 5919    +o coa 6468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-oadd 6475
This theorem is referenced by:  nnmcl  6536  nnacli  6537  nnaass  6540  nndi  6541  nndir  6545  nnaordi  6563  nnaord  6564  nnaword  6566  addclpi  7389  nnppipi  7405  archnqq  7479  addcmpblnq0  7505  addclnq0  7513  nnanq0  7520  distrnq0  7521  addassnq0lemcl  7523  prarloclemlt  7555  prarloclemlo  7556  prarloclem3  7559  omgadd  10876  hashunlem  10878  hashun  10879
  Copyright terms: Public domain W3C validator