| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnacl | Unicode version | ||
| Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnacl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6009 |
. . . . 5
| |
| 2 | 1 | eleq1d 2298 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 6009 |
. . . . 5
| |
| 5 | 4 | eleq1d 2298 |
. . . 4
|
| 6 | oveq2 6009 |
. . . . 5
| |
| 7 | 6 | eleq1d 2298 |
. . . 4
|
| 8 | oveq2 6009 |
. . . . 5
| |
| 9 | 8 | eleq1d 2298 |
. . . 4
|
| 10 | nna0 6620 |
. . . . . 6
| |
| 11 | 10 | eleq1d 2298 |
. . . . 5
|
| 12 | 11 | ibir 177 |
. . . 4
|
| 13 | peano2 4687 |
. . . . . 6
| |
| 14 | nnasuc 6622 |
. . . . . . 7
| |
| 15 | 14 | eleq1d 2298 |
. . . . . 6
|
| 16 | 13, 15 | imbitrrid 156 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 5, 7, 9, 12, 17 | finds2 4693 |
. . 3
|
| 19 | 3, 18 | vtoclga 2867 |
. 2
|
| 20 | 19 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-oadd 6566 |
| This theorem is referenced by: nnmcl 6627 nnacli 6628 nnaass 6631 nndi 6632 nndir 6636 nnaordi 6654 nnaord 6655 nnaword 6657 addclpi 7514 nnppipi 7530 archnqq 7604 addcmpblnq0 7630 addclnq0 7638 nnanq0 7645 distrnq0 7646 addassnq0lemcl 7648 prarloclemlt 7680 prarloclemlo 7681 prarloclem3 7684 omgadd 11024 hashunlem 11026 hashun 11027 |
| Copyright terms: Public domain | W3C validator |