| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnacl | Unicode version | ||
| Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnacl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5975 |
. . . . 5
| |
| 2 | 1 | eleq1d 2276 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 5975 |
. . . . 5
| |
| 5 | 4 | eleq1d 2276 |
. . . 4
|
| 6 | oveq2 5975 |
. . . . 5
| |
| 7 | 6 | eleq1d 2276 |
. . . 4
|
| 8 | oveq2 5975 |
. . . . 5
| |
| 9 | 8 | eleq1d 2276 |
. . . 4
|
| 10 | nna0 6583 |
. . . . . 6
| |
| 11 | 10 | eleq1d 2276 |
. . . . 5
|
| 12 | 11 | ibir 177 |
. . . 4
|
| 13 | peano2 4661 |
. . . . . 6
| |
| 14 | nnasuc 6585 |
. . . . . . 7
| |
| 15 | 14 | eleq1d 2276 |
. . . . . 6
|
| 16 | 13, 15 | imbitrrid 156 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 5, 7, 9, 12, 17 | finds2 4667 |
. . 3
|
| 19 | 3, 18 | vtoclga 2844 |
. 2
|
| 20 | 19 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-oadd 6529 |
| This theorem is referenced by: nnmcl 6590 nnacli 6591 nnaass 6594 nndi 6595 nndir 6599 nnaordi 6617 nnaord 6618 nnaword 6620 addclpi 7475 nnppipi 7491 archnqq 7565 addcmpblnq0 7591 addclnq0 7599 nnanq0 7606 distrnq0 7607 addassnq0lemcl 7609 prarloclemlt 7641 prarloclemlo 7642 prarloclem3 7645 omgadd 10984 hashunlem 10986 hashun 10987 |
| Copyright terms: Public domain | W3C validator |