| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnacl | Unicode version | ||
| Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| nnacl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5952 |
. . . . 5
| |
| 2 | 1 | eleq1d 2274 |
. . . 4
|
| 3 | 2 | imbi2d 230 |
. . 3
|
| 4 | oveq2 5952 |
. . . . 5
| |
| 5 | 4 | eleq1d 2274 |
. . . 4
|
| 6 | oveq2 5952 |
. . . . 5
| |
| 7 | 6 | eleq1d 2274 |
. . . 4
|
| 8 | oveq2 5952 |
. . . . 5
| |
| 9 | 8 | eleq1d 2274 |
. . . 4
|
| 10 | nna0 6560 |
. . . . . 6
| |
| 11 | 10 | eleq1d 2274 |
. . . . 5
|
| 12 | 11 | ibir 177 |
. . . 4
|
| 13 | peano2 4643 |
. . . . . 6
| |
| 14 | nnasuc 6562 |
. . . . . . 7
| |
| 15 | 14 | eleq1d 2274 |
. . . . . 6
|
| 16 | 13, 15 | imbitrrid 156 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 5, 7, 9, 12, 17 | finds2 4649 |
. . 3
|
| 19 | 3, 18 | vtoclga 2839 |
. 2
|
| 20 | 19 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-oadd 6506 |
| This theorem is referenced by: nnmcl 6567 nnacli 6568 nnaass 6571 nndi 6572 nndir 6576 nnaordi 6594 nnaord 6595 nnaword 6597 addclpi 7440 nnppipi 7456 archnqq 7530 addcmpblnq0 7556 addclnq0 7564 nnanq0 7571 distrnq0 7572 addassnq0lemcl 7574 prarloclemlt 7606 prarloclemlo 7607 prarloclem3 7610 omgadd 10947 hashunlem 10949 hashun 10950 |
| Copyright terms: Public domain | W3C validator |