ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzaddcl Unicode version

Theorem uzaddcl 9043
Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uzaddcl  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  NN0 )  ->  ( N  +  K )  e.  ( ZZ>= `  M )
)

Proof of Theorem uzaddcl
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5642 . . . . 5  |-  ( j  =  0  ->  ( N  +  j )  =  ( N  + 
0 ) )
21eleq1d 2156 . . . 4  |-  ( j  =  0  ->  (
( N  +  j )  e.  ( ZZ>= `  M )  <->  ( N  +  0 )  e.  ( ZZ>= `  M )
) )
32imbi2d 228 . . 3  |-  ( j  =  0  ->  (
( N  e.  (
ZZ>= `  M )  -> 
( N  +  j )  e.  ( ZZ>= `  M ) )  <->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  0 )  e.  ( ZZ>= `  M ) ) ) )
4 oveq2 5642 . . . . 5  |-  ( j  =  k  ->  ( N  +  j )  =  ( N  +  k ) )
54eleq1d 2156 . . . 4  |-  ( j  =  k  ->  (
( N  +  j )  e.  ( ZZ>= `  M )  <->  ( N  +  k )  e.  ( ZZ>= `  M )
) )
65imbi2d 228 . . 3  |-  ( j  =  k  ->  (
( N  e.  (
ZZ>= `  M )  -> 
( N  +  j )  e.  ( ZZ>= `  M ) )  <->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  k )  e.  ( ZZ>= `  M ) ) ) )
7 oveq2 5642 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( N  +  j )  =  ( N  +  ( k  +  1 ) ) )
87eleq1d 2156 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( N  +  j )  e.  ( ZZ>= `  M )  <->  ( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M )
) )
98imbi2d 228 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( N  e.  (
ZZ>= `  M )  -> 
( N  +  j )  e.  ( ZZ>= `  M ) )  <->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M ) ) ) )
10 oveq2 5642 . . . . 5  |-  ( j  =  K  ->  ( N  +  j )  =  ( N  +  K ) )
1110eleq1d 2156 . . . 4  |-  ( j  =  K  ->  (
( N  +  j )  e.  ( ZZ>= `  M )  <->  ( N  +  K )  e.  (
ZZ>= `  M ) ) )
1211imbi2d 228 . . 3  |-  ( j  =  K  ->  (
( N  e.  (
ZZ>= `  M )  -> 
( N  +  j )  e.  ( ZZ>= `  M ) )  <->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  K
)  e.  ( ZZ>= `  M ) ) ) )
13 eluzelcn 8999 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
1413addid1d 7610 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  0 )  =  N )
1514eleq1d 2156 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  0 )  e.  ( ZZ>= `  M
)  <->  N  e.  ( ZZ>=
`  M ) ) )
1615ibir 175 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  0 )  e.  ( ZZ>= `  M )
)
17 nn0cn 8653 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  CC )
18 ax-1cn 7417 . . . . . . . . 9  |-  1  e.  CC
19 addass 7451 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
2018, 19mp3an3 1262 . . . . . . . 8  |-  ( ( N  e.  CC  /\  k  e.  CC )  ->  ( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
2113, 17, 20syl2anr 284 . . . . . . 7  |-  ( ( k  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  -> 
( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
2221adantr 270 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( N  +  k
)  e.  ( ZZ>= `  M ) )  -> 
( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
23 peano2uz 9040 . . . . . . 7  |-  ( ( N  +  k )  e.  ( ZZ>= `  M
)  ->  ( ( N  +  k )  +  1 )  e.  ( ZZ>= `  M )
)
2423adantl 271 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( N  +  k
)  e.  ( ZZ>= `  M ) )  -> 
( ( N  +  k )  +  1 )  e.  ( ZZ>= `  M ) )
2522, 24eqeltrrd 2165 . . . . 5  |-  ( ( ( k  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( N  +  k
)  e.  ( ZZ>= `  M ) )  -> 
( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M ) )
2625exp31 356 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  k )  e.  ( ZZ>= `  M )  ->  ( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M ) ) ) )
2726a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  ( ZZ>= `  M )  ->  ( N  +  k )  e.  ( ZZ>= `  M )
)  ->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M ) ) ) )
283, 6, 9, 12, 16, 27nn0ind 8830 . 2  |-  ( K  e.  NN0  ->  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  K )  e.  (
ZZ>= `  M ) ) )
2928impcom 123 1  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  NN0 )  ->  ( N  +  K )  e.  ( ZZ>= `  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1289    e. wcel 1438   ` cfv 5002  (class class class)co 5634   CCcc 7327   0cc0 7329   1c1 7330    + caddc 7332   NN0cn0 8643   ZZ>=cuz 8988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-addcom 7424  ax-addass 7426  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-0id 7432  ax-rnegex 7433  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-ltadd 7440
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2839  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-inn 8395  df-n0 8644  df-z 8721  df-uz 8989
This theorem is referenced by:  elfz0add  9499  zpnn0elfzo  9583
  Copyright terms: Public domain W3C validator