ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expcllem Unicode version

Theorem expcllem 10727
Description: Lemma for proving nonnegative integer exponentiation closure laws. (Contributed by NM, 14-Dec-2005.)
Hypotheses
Ref Expression
expcllem.1  |-  F  C_  CC
expcllem.2  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
expcllem.3  |-  1  e.  F
Assertion
Ref Expression
expcllem  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
Distinct variable groups:    x, y, A   
x, B    x, F, y
Allowed substitution hint:    B( y)

Proof of Theorem expcllem
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn0 9327 . 2  |-  ( B  e.  NN0  <->  ( B  e.  NN  \/  B  =  0 ) )
2 oveq2 5970 . . . . . . 7  |-  ( z  =  1  ->  ( A ^ z )  =  ( A ^ 1 ) )
32eleq1d 2275 . . . . . 6  |-  ( z  =  1  ->  (
( A ^ z
)  e.  F  <->  ( A ^ 1 )  e.  F ) )
43imbi2d 230 . . . . 5  |-  ( z  =  1  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ 1 )  e.  F ) ) )
5 oveq2 5970 . . . . . . 7  |-  ( z  =  w  ->  ( A ^ z )  =  ( A ^ w
) )
65eleq1d 2275 . . . . . 6  |-  ( z  =  w  ->  (
( A ^ z
)  e.  F  <->  ( A ^ w )  e.  F ) )
76imbi2d 230 . . . . 5  |-  ( z  =  w  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ w
)  e.  F ) ) )
8 oveq2 5970 . . . . . . 7  |-  ( z  =  ( w  + 
1 )  ->  ( A ^ z )  =  ( A ^ (
w  +  1 ) ) )
98eleq1d 2275 . . . . . 6  |-  ( z  =  ( w  + 
1 )  ->  (
( A ^ z
)  e.  F  <->  ( A ^ ( w  + 
1 ) )  e.  F ) )
109imbi2d 230 . . . . 5  |-  ( z  =  ( w  + 
1 )  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ (
w  +  1 ) )  e.  F ) ) )
11 oveq2 5970 . . . . . . 7  |-  ( z  =  B  ->  ( A ^ z )  =  ( A ^ B
) )
1211eleq1d 2275 . . . . . 6  |-  ( z  =  B  ->  (
( A ^ z
)  e.  F  <->  ( A ^ B )  e.  F
) )
1312imbi2d 230 . . . . 5  |-  ( z  =  B  ->  (
( A  e.  F  ->  ( A ^ z
)  e.  F )  <-> 
( A  e.  F  ->  ( A ^ B
)  e.  F ) ) )
14 expcllem.1 . . . . . . . . 9  |-  F  C_  CC
1514sseli 3193 . . . . . . . 8  |-  ( A  e.  F  ->  A  e.  CC )
16 exp1 10722 . . . . . . . 8  |-  ( A  e.  CC  ->  ( A ^ 1 )  =  A )
1715, 16syl 14 . . . . . . 7  |-  ( A  e.  F  ->  ( A ^ 1 )  =  A )
1817eleq1d 2275 . . . . . 6  |-  ( A  e.  F  ->  (
( A ^ 1 )  e.  F  <->  A  e.  F ) )
1918ibir 177 . . . . 5  |-  ( A  e.  F  ->  ( A ^ 1 )  e.  F )
20 expcllem.2 . . . . . . . . . . . 12  |-  ( ( x  e.  F  /\  y  e.  F )  ->  ( x  x.  y
)  e.  F )
2120caovcl 6119 . . . . . . . . . . 11  |-  ( ( ( A ^ w
)  e.  F  /\  A  e.  F )  ->  ( ( A ^
w )  x.  A
)  e.  F )
2221ancoms 268 . . . . . . . . . 10  |-  ( ( A  e.  F  /\  ( A ^ w )  e.  F )  -> 
( ( A ^
w )  x.  A
)  e.  F )
2322adantlr 477 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  w  e.  NN )  /\  ( A ^
w )  e.  F
)  ->  ( ( A ^ w )  x.  A )  e.  F
)
24 nnnn0 9332 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  w  e.  NN0 )
25 expp1 10723 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  w  e.  NN0 )  -> 
( A ^ (
w  +  1 ) )  =  ( ( A ^ w )  x.  A ) )
2615, 24, 25syl2an 289 . . . . . . . . . . 11  |-  ( ( A  e.  F  /\  w  e.  NN )  ->  ( A ^ (
w  +  1 ) )  =  ( ( A ^ w )  x.  A ) )
2726eleq1d 2275 . . . . . . . . . 10  |-  ( ( A  e.  F  /\  w  e.  NN )  ->  ( ( A ^
( w  +  1 ) )  e.  F  <->  ( ( A ^ w
)  x.  A )  e.  F ) )
2827adantr 276 . . . . . . . . 9  |-  ( ( ( A  e.  F  /\  w  e.  NN )  /\  ( A ^
w )  e.  F
)  ->  ( ( A ^ ( w  + 
1 ) )  e.  F  <->  ( ( A ^ w )  x.  A )  e.  F
) )
2923, 28mpbird 167 . . . . . . . 8  |-  ( ( ( A  e.  F  /\  w  e.  NN )  /\  ( A ^
w )  e.  F
)  ->  ( A ^ ( w  + 
1 ) )  e.  F )
3029exp31 364 . . . . . . 7  |-  ( A  e.  F  ->  (
w  e.  NN  ->  ( ( A ^ w
)  e.  F  -> 
( A ^ (
w  +  1 ) )  e.  F ) ) )
3130com12 30 . . . . . 6  |-  ( w  e.  NN  ->  ( A  e.  F  ->  ( ( A ^ w
)  e.  F  -> 
( A ^ (
w  +  1 ) )  e.  F ) ) )
3231a2d 26 . . . . 5  |-  ( w  e.  NN  ->  (
( A  e.  F  ->  ( A ^ w
)  e.  F )  ->  ( A  e.  F  ->  ( A ^ ( w  + 
1 ) )  e.  F ) ) )
334, 7, 10, 13, 19, 32nnind 9082 . . . 4  |-  ( B  e.  NN  ->  ( A  e.  F  ->  ( A ^ B )  e.  F ) )
3433impcom 125 . . 3  |-  ( ( A  e.  F  /\  B  e.  NN )  ->  ( A ^ B
)  e.  F )
35 oveq2 5970 . . . . 5  |-  ( B  =  0  ->  ( A ^ B )  =  ( A ^ 0 ) )
36 exp0 10720 . . . . . 6  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
3715, 36syl 14 . . . . 5  |-  ( A  e.  F  ->  ( A ^ 0 )  =  1 )
3835, 37sylan9eqr 2261 . . . 4  |-  ( ( A  e.  F  /\  B  =  0 )  ->  ( A ^ B )  =  1 )
39 expcllem.3 . . . 4  |-  1  e.  F
4038, 39eqeltrdi 2297 . . 3  |-  ( ( A  e.  F  /\  B  =  0 )  ->  ( A ^ B )  e.  F
)
4134, 40jaodan 799 . 2  |-  ( ( A  e.  F  /\  ( B  e.  NN  \/  B  =  0
) )  ->  ( A ^ B )  e.  F )
421, 41sylan2b 287 1  |-  ( ( A  e.  F  /\  B  e.  NN0 )  -> 
( A ^ B
)  e.  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177    C_ wss 3170  (class class class)co 5962   CCcc 7953   0cc0 7955   1c1 7956    + caddc 7958    x. cmul 7960   NNcn 9066   NN0cn0 9325   ^cexp 10715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-seqfrec 10625  df-exp 10716
This theorem is referenced by:  expcl2lemap  10728  nnexpcl  10729  nn0expcl  10730  zexpcl  10731  qexpcl  10732  reexpcl  10733  expcl  10734  expge0  10752  expge1  10753  lgsfcl2  15568
  Copyright terms: Public domain W3C validator