ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  facnn Unicode version

Theorem facnn 10949
Description: Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
Assertion
Ref Expression
facnn  |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ) `  N )
)

Proof of Theorem facnn
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 8140 . . 3  |-  0  e.  _V
2 1ex 8141 . . 3  |-  1  e.  _V
3 df-fac 10948 . . . 4  |-  !  =  ( { <. 0 ,  1 >. }  u.  seq 1 (  x.  ,  _I  ) )
4 nnuz 9758 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
5 dfn2 9382 . . . . . . . 8  |-  NN  =  ( NN0  \  { 0 } )
64, 5eqtr3i 2252 . . . . . . 7  |-  ( ZZ>= ` 
1 )  =  ( NN0  \  { 0 } )
76reseq2i 5002 . . . . . 6  |-  (  seq 1 (  x.  ,  _I  )  |`  ( ZZ>= ` 
1 ) )  =  (  seq 1 (  x.  ,  _I  )  |`  ( NN0  \  {
0 } ) )
8 eqid 2229 . . . . . . . . . 10  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  1 )
9 1zzd 9473 . . . . . . . . . 10  |-  ( T. 
->  1  e.  ZZ )
10 fvi 5691 . . . . . . . . . . . . . 14  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  =  f )
1110eleq1d 2298 . . . . . . . . . . . . 13  |-  ( f  e.  ( ZZ>= `  1
)  ->  ( (  _I  `  f )  e.  ( ZZ>= `  1 )  <->  f  e.  ( ZZ>= `  1
) ) )
1211ibir 177 . . . . . . . . . . . 12  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  (
ZZ>= `  1 ) )
13 eluzelcn 9733 . . . . . . . . . . . 12  |-  ( (  _I  `  f )  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  CC )
1412, 13syl 14 . . . . . . . . . . 11  |-  ( f  e.  ( ZZ>= `  1
)  ->  (  _I  `  f )  e.  CC )
1514adantl 277 . . . . . . . . . 10  |-  ( ( T.  /\  f  e.  ( ZZ>= `  1 )
)  ->  (  _I  `  f )  e.  CC )
16 mulcl 8126 . . . . . . . . . . 11  |-  ( ( f  e.  CC  /\  g  e.  CC )  ->  ( f  x.  g
)  e.  CC )
1716adantl 277 . . . . . . . . . 10  |-  ( ( T.  /\  ( f  e.  CC  /\  g  e.  CC ) )  -> 
( f  x.  g
)  e.  CC )
188, 9, 15, 17seqf 10686 . . . . . . . . 9  |-  ( T. 
->  seq 1 (  x.  ,  _I  ) : ( ZZ>= `  1 ) --> CC )
1918ffnd 5474 . . . . . . . 8  |-  ( T. 
->  seq 1 (  x.  ,  _I  )  Fn  ( ZZ>= `  1 )
)
2019mptru 1404 . . . . . . 7  |-  seq 1
(  x.  ,  _I  )  Fn  ( ZZ>= ` 
1 )
21 fnresdm 5432 . . . . . . 7  |-  (  seq 1 (  x.  ,  _I  )  Fn  ( ZZ>=
`  1 )  -> 
(  seq 1 (  x.  ,  _I  )  |`  ( ZZ>= `  1 )
)  =  seq 1
(  x.  ,  _I  ) )
2220, 21ax-mp 5 . . . . . 6  |-  (  seq 1 (  x.  ,  _I  )  |`  ( ZZ>= ` 
1 ) )  =  seq 1 (  x.  ,  _I  )
237, 22eqtr3i 2252 . . . . 5  |-  (  seq 1 (  x.  ,  _I  )  |`  ( NN0  \  { 0 } ) )  =  seq 1
(  x.  ,  _I  )
2423uneq2i 3355 . . . 4  |-  ( {
<. 0 ,  1
>. }  u.  (  seq 1 (  x.  ,  _I  )  |`  ( NN0  \  { 0 } ) ) )  =  ( { <. 0 ,  1
>. }  u.  seq 1
(  x.  ,  _I  ) )
253, 24eqtr4i 2253 . . 3  |-  !  =  ( { <. 0 ,  1 >. }  u.  (  seq 1 (  x.  ,  _I  )  |`  ( NN0  \  { 0 } ) ) )
261, 2, 25fvsnun2 5837 . 2  |-  ( N  e.  ( NN0  \  {
0 } )  -> 
( ! `  N
)  =  (  seq 1 (  x.  ,  _I  ) `  N ) )
2726, 5eleq2s 2324 1  |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1
(  x.  ,  _I  ) `  N )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   T. wtru 1396    e. wcel 2200    \ cdif 3194    u. cun 3195   {csn 3666   <.cop 3669    _I cid 4379    |` cres 4721    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    x. cmul 8004   NNcn 9110   NN0cn0 9369   ZZ>=cuz 9722    seqcseq 10669   !cfa 10947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-fac 10948
This theorem is referenced by:  fac1  10951  facp1  10952  bcval5  10985
  Copyright terms: Public domain W3C validator