ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1exp Unicode version

Theorem 1exp 10099
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
1exp  |-  ( N  e.  ZZ  ->  (
1 ^ N )  =  1 )

Proof of Theorem 1exp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 7580 . . . 4  |-  1  e.  _V
21snid 3495 . . 3  |-  1  e.  { 1 }
3 1ap0 8164 . . 3  |-  1 #  0
4 ax-1cn 7535 . . . . 5  |-  1  e.  CC
5 snssi 3603 . . . . 5  |-  ( 1  e.  CC  ->  { 1 }  C_  CC )
64, 5ax-mp 7 . . . 4  |-  { 1 }  C_  CC
7 elsni 3484 . . . . . 6  |-  ( x  e.  { 1 }  ->  x  =  1 )
8 elsni 3484 . . . . . 6  |-  ( y  e.  { 1 }  ->  y  =  1 )
9 oveq12 5699 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  1 )  ->  ( x  x.  y )  =  ( 1  x.  1 ) )
10 1t1e1 8666 . . . . . . 7  |-  ( 1  x.  1 )  =  1
119, 10syl6eq 2143 . . . . . 6  |-  ( ( x  =  1  /\  y  =  1 )  ->  ( x  x.  y )  =  1 )
127, 8, 11syl2an 284 . . . . 5  |-  ( ( x  e.  { 1 }  /\  y  e. 
{ 1 } )  ->  ( x  x.  y )  =  1 )
13 eleq1 2157 . . . . . . . 8  |-  ( ( x  x.  y )  =  1  ->  (
( x  x.  y
)  e.  _V  <->  1  e.  _V ) )
141, 13mpbiri 167 . . . . . . 7  |-  ( ( x  x.  y )  =  1  ->  (
x  x.  y )  e.  _V )
15 elsng 3481 . . . . . . 7  |-  ( ( x  x.  y )  e.  _V  ->  (
( x  x.  y
)  e.  { 1 }  <->  ( x  x.  y )  =  1 ) )
1614, 15syl 14 . . . . . 6  |-  ( ( x  x.  y )  =  1  ->  (
( x  x.  y
)  e.  { 1 }  <->  ( x  x.  y )  =  1 ) )
1716ibir 176 . . . . 5  |-  ( ( x  x.  y )  =  1  ->  (
x  x.  y )  e.  { 1 } )
1812, 17syl 14 . . . 4  |-  ( ( x  e.  { 1 }  /\  y  e. 
{ 1 } )  ->  ( x  x.  y )  e.  {
1 } )
197oveq2d 5706 . . . . . . 7  |-  ( x  e.  { 1 }  ->  ( 1  /  x )  =  ( 1  /  1 ) )
20 1div1e1 8268 . . . . . . 7  |-  ( 1  /  1 )  =  1
2119, 20syl6eq 2143 . . . . . 6  |-  ( x  e.  { 1 }  ->  ( 1  /  x )  =  1 )
22 eleq1 2157 . . . . . . . . 9  |-  ( ( 1  /  x )  =  1  ->  (
( 1  /  x
)  e.  _V  <->  1  e.  _V ) )
231, 22mpbiri 167 . . . . . . . 8  |-  ( ( 1  /  x )  =  1  ->  (
1  /  x )  e.  _V )
24 elsng 3481 . . . . . . . 8  |-  ( ( 1  /  x )  e.  _V  ->  (
( 1  /  x
)  e.  { 1 }  <->  ( 1  /  x )  =  1 ) )
2523, 24syl 14 . . . . . . 7  |-  ( ( 1  /  x )  =  1  ->  (
( 1  /  x
)  e.  { 1 }  <->  ( 1  /  x )  =  1 ) )
2625ibir 176 . . . . . 6  |-  ( ( 1  /  x )  =  1  ->  (
1  /  x )  e.  { 1 } )
2721, 26syl 14 . . . . 5  |-  ( x  e.  { 1 }  ->  ( 1  /  x )  e.  {
1 } )
2827adantr 271 . . . 4  |-  ( ( x  e.  { 1 }  /\  x #  0 )  ->  ( 1  /  x )  e. 
{ 1 } )
296, 18, 2, 28expcl2lemap 10082 . . 3  |-  ( ( 1  e.  { 1 }  /\  1 #  0  /\  N  e.  ZZ )  ->  ( 1 ^ N )  e.  {
1 } )
302, 3, 29mp3an12 1270 . 2  |-  ( N  e.  ZZ  ->  (
1 ^ N )  e.  { 1 } )
31 elsni 3484 . 2  |-  ( ( 1 ^ N )  e.  { 1 }  ->  ( 1 ^ N )  =  1 )
3230, 31syl 14 1  |-  ( N  e.  ZZ  ->  (
1 ^ N )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1296    e. wcel 1445   _Vcvv 2633    C_ wss 3013   {csn 3466   class class class wbr 3867  (class class class)co 5690   CCcc 7445   0cc0 7447   1c1 7448    x. cmul 7452   # cap 8155    / cdiv 8236   ZZcz 8848   ^cexp 10069
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-if 3414  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-frec 6194  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-seqfrec 10001  df-exp 10070
This theorem is referenced by:  exprecap  10111  sq1  10163  iexpcyc  10174  binom1p  11028  binom11  11029  esum  11101  ege2le3  11110  eirraplem  11213
  Copyright terms: Public domain W3C validator