ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1exp Unicode version

Theorem 1exp 10322
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
1exp  |-  ( N  e.  ZZ  ->  (
1 ^ N )  =  1 )

Proof of Theorem 1exp
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1ex 7761 . . . 4  |-  1  e.  _V
21snid 3556 . . 3  |-  1  e.  { 1 }
3 1ap0 8352 . . 3  |-  1 #  0
4 ax-1cn 7713 . . . . 5  |-  1  e.  CC
5 snssi 3664 . . . . 5  |-  ( 1  e.  CC  ->  { 1 }  C_  CC )
64, 5ax-mp 5 . . . 4  |-  { 1 }  C_  CC
7 elsni 3545 . . . . . 6  |-  ( x  e.  { 1 }  ->  x  =  1 )
8 elsni 3545 . . . . . 6  |-  ( y  e.  { 1 }  ->  y  =  1 )
9 oveq12 5783 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  1 )  ->  ( x  x.  y )  =  ( 1  x.  1 ) )
10 1t1e1 8872 . . . . . . 7  |-  ( 1  x.  1 )  =  1
119, 10syl6eq 2188 . . . . . 6  |-  ( ( x  =  1  /\  y  =  1 )  ->  ( x  x.  y )  =  1 )
127, 8, 11syl2an 287 . . . . 5  |-  ( ( x  e.  { 1 }  /\  y  e. 
{ 1 } )  ->  ( x  x.  y )  =  1 )
13 eleq1 2202 . . . . . . . 8  |-  ( ( x  x.  y )  =  1  ->  (
( x  x.  y
)  e.  _V  <->  1  e.  _V ) )
141, 13mpbiri 167 . . . . . . 7  |-  ( ( x  x.  y )  =  1  ->  (
x  x.  y )  e.  _V )
15 elsng 3542 . . . . . . 7  |-  ( ( x  x.  y )  e.  _V  ->  (
( x  x.  y
)  e.  { 1 }  <->  ( x  x.  y )  =  1 ) )
1614, 15syl 14 . . . . . 6  |-  ( ( x  x.  y )  =  1  ->  (
( x  x.  y
)  e.  { 1 }  <->  ( x  x.  y )  =  1 ) )
1716ibir 176 . . . . 5  |-  ( ( x  x.  y )  =  1  ->  (
x  x.  y )  e.  { 1 } )
1812, 17syl 14 . . . 4  |-  ( ( x  e.  { 1 }  /\  y  e. 
{ 1 } )  ->  ( x  x.  y )  e.  {
1 } )
197oveq2d 5790 . . . . . . 7  |-  ( x  e.  { 1 }  ->  ( 1  /  x )  =  ( 1  /  1 ) )
20 1div1e1 8464 . . . . . . 7  |-  ( 1  /  1 )  =  1
2119, 20syl6eq 2188 . . . . . 6  |-  ( x  e.  { 1 }  ->  ( 1  /  x )  =  1 )
22 eleq1 2202 . . . . . . . . 9  |-  ( ( 1  /  x )  =  1  ->  (
( 1  /  x
)  e.  _V  <->  1  e.  _V ) )
231, 22mpbiri 167 . . . . . . . 8  |-  ( ( 1  /  x )  =  1  ->  (
1  /  x )  e.  _V )
24 elsng 3542 . . . . . . . 8  |-  ( ( 1  /  x )  e.  _V  ->  (
( 1  /  x
)  e.  { 1 }  <->  ( 1  /  x )  =  1 ) )
2523, 24syl 14 . . . . . . 7  |-  ( ( 1  /  x )  =  1  ->  (
( 1  /  x
)  e.  { 1 }  <->  ( 1  /  x )  =  1 ) )
2625ibir 176 . . . . . 6  |-  ( ( 1  /  x )  =  1  ->  (
1  /  x )  e.  { 1 } )
2721, 26syl 14 . . . . 5  |-  ( x  e.  { 1 }  ->  ( 1  /  x )  e.  {
1 } )
2827adantr 274 . . . 4  |-  ( ( x  e.  { 1 }  /\  x #  0 )  ->  ( 1  /  x )  e. 
{ 1 } )
296, 18, 2, 28expcl2lemap 10305 . . 3  |-  ( ( 1  e.  { 1 }  /\  1 #  0  /\  N  e.  ZZ )  ->  ( 1 ^ N )  e.  {
1 } )
302, 3, 29mp3an12 1305 . 2  |-  ( N  e.  ZZ  ->  (
1 ^ N )  e.  { 1 } )
31 elsni 3545 . 2  |-  ( ( 1 ^ N )  e.  { 1 }  ->  ( 1 ^ N )  =  1 )
3230, 31syl 14 1  |-  ( N  e.  ZZ  ->  (
1 ^ N )  =  1 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2686    C_ wss 3071   {csn 3527   class class class wbr 3929  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    x. cmul 7625   # cap 8343    / cdiv 8432   ZZcz 9054   ^cexp 10292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327  df-seqfrec 10219  df-exp 10293
This theorem is referenced by:  exprecap  10334  sq1  10386  iexpcyc  10397  binom1p  11254  binom11  11255  esum  11368  ege2le3  11377  eirraplem  11483  ef2kpi  12887
  Copyright terms: Public domain W3C validator