Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1exp | Unicode version |
Description: Value of one raised to a nonnegative integer power. (Contributed by NM, 15-Dec-2005.) (Revised by Mario Carneiro, 4-Jun-2014.) |
Ref | Expression |
---|---|
1exp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 7919 | . . . 4 | |
2 | 1 | snid 3615 | . . 3 |
3 | 1ap0 8513 | . . 3 # | |
4 | ax-1cn 7871 | . . . . 5 | |
5 | snssi 3725 | . . . . 5 | |
6 | 4, 5 | ax-mp 5 | . . . 4 |
7 | elsni 3602 | . . . . . 6 | |
8 | elsni 3602 | . . . . . 6 | |
9 | oveq12 5866 | . . . . . . 7 | |
10 | 1t1e1 9034 | . . . . . . 7 | |
11 | 9, 10 | eqtrdi 2220 | . . . . . 6 |
12 | 7, 8, 11 | syl2an 287 | . . . . 5 |
13 | eleq1 2234 | . . . . . . . 8 | |
14 | 1, 13 | mpbiri 167 | . . . . . . 7 |
15 | elsng 3599 | . . . . . . 7 | |
16 | 14, 15 | syl 14 | . . . . . 6 |
17 | 16 | ibir 176 | . . . . 5 |
18 | 12, 17 | syl 14 | . . . 4 |
19 | 7 | oveq2d 5873 | . . . . . . 7 |
20 | 1div1e1 8625 | . . . . . . 7 | |
21 | 19, 20 | eqtrdi 2220 | . . . . . 6 |
22 | eleq1 2234 | . . . . . . . . 9 | |
23 | 1, 22 | mpbiri 167 | . . . . . . . 8 |
24 | elsng 3599 | . . . . . . . 8 | |
25 | 23, 24 | syl 14 | . . . . . . 7 |
26 | 25 | ibir 176 | . . . . . 6 |
27 | 21, 26 | syl 14 | . . . . 5 |
28 | 27 | adantr 274 | . . . 4 # |
29 | 6, 18, 2, 28 | expcl2lemap 10492 | . . 3 # |
30 | 2, 3, 29 | mp3an12 1323 | . 2 |
31 | elsni 3602 | . 2 | |
32 | 30, 31 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1349 wcel 2142 cvv 2731 wss 3122 csn 3584 class class class wbr 3990 (class class class)co 5857 cc 7776 cc0 7778 c1 7779 cmul 7783 # cap 8504 cdiv 8593 cz 9216 cexp 10479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-coll 4105 ax-sep 4108 ax-nul 4116 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-iinf 4573 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-mulrcl 7877 ax-addcom 7878 ax-mulcom 7879 ax-addass 7880 ax-mulass 7881 ax-distr 7882 ax-i2m1 7883 ax-0lt1 7884 ax-1rid 7885 ax-0id 7886 ax-rnegex 7887 ax-precex 7888 ax-cnre 7889 ax-pre-ltirr 7890 ax-pre-ltwlin 7891 ax-pre-lttrn 7892 ax-pre-apti 7893 ax-pre-ltadd 7894 ax-pre-mulgt0 7895 ax-pre-mulext 7896 |
This theorem depends on definitions: df-bi 116 df-dc 831 df-3or 975 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-nel 2437 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-nul 3416 df-if 3528 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-iun 3876 df-br 3991 df-opab 4052 df-mpt 4053 df-tr 4089 df-id 4279 df-po 4282 df-iso 4283 df-iord 4352 df-on 4354 df-ilim 4355 df-suc 4357 df-iom 4576 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-ima 4625 df-iota 5162 df-fun 5202 df-fn 5203 df-f 5204 df-f1 5205 df-fo 5206 df-f1o 5207 df-fv 5208 df-riota 5813 df-ov 5860 df-oprab 5861 df-mpo 5862 df-1st 6123 df-2nd 6124 df-recs 6288 df-frec 6374 df-pnf 7960 df-mnf 7961 df-xr 7962 df-ltxr 7963 df-le 7964 df-sub 8096 df-neg 8097 df-reap 8498 df-ap 8505 df-div 8594 df-inn 8883 df-n0 9140 df-z 9217 df-uz 9492 df-seqfrec 10406 df-exp 10480 |
This theorem is referenced by: exprecap 10521 sq1 10573 iexpcyc 10584 binom1p 11452 binom11 11453 esum 11629 ege2le3 11638 eirraplem 11743 odzdvds 12203 ef2kpi 13606 |
Copyright terms: Public domain | W3C validator |