ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn2 Unicode version

Theorem bcn2 10946
Description: Binomial coefficient:  N choose  2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )

Proof of Theorem bcn2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 9233 . . 3  |-  2  e.  NN
2 bcval5 10945 . . 3  |-  ( ( N  e.  NN0  /\  2  e.  NN )  ->  ( N  _C  2
)  =  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
) )
31, 2mpan2 425 . 2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( (  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! ` 
2 ) ) )
4 2m1e1 9189 . . . . . . . 8  |-  ( 2  -  1 )  =  1
54oveq2i 5978 . . . . . . 7  |-  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( ( N  - 
2 )  +  1 )
6 nn0cn 9340 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
7 2cn 9142 . . . . . . . . 9  |-  2  e.  CC
8 ax-1cn 8053 . . . . . . . . 9  |-  1  e.  CC
9 npncan 8328 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
107, 8, 9mp3an23 1342 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
116, 10syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  -  1 ) )
125, 11eqtr3id 2254 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  1 )  =  ( N  -  1 ) )
1312seqeq1d 10635 . . . . 5  |-  ( N  e.  NN0  ->  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  )  =  seq ( N  -  1 ) (  x.  ,  _I  ) )
1413fveq1d 5601 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )
)
15 nn0z 9427 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
16 peano2zm 9445 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
1715, 16syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  ZZ )
18 uzid 9697 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
1915, 18syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  N )
)
20 npcan 8316 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
216, 8, 20sylancl 413 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  +  1 )  =  N )
2221fveq2d 5603 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) )  =  (
ZZ>= `  N ) )
2319, 22eleqtrrd 2287 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
24 eluzelcn 9694 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  ( N  -  1 ) )  ->  x  e.  CC )
2524adantl 277 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  x  e.  ( ZZ>= `  ( N  -  1
) ) )  ->  x  e.  CC )
26 fvi 5659 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (  _I  `  x )  =  x )
2726eleq1d 2276 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
(  _I  `  x
)  e.  CC  <->  x  e.  CC ) )
2827ibir 177 . . . . . . . 8  |-  ( x  e.  CC  ->  (  _I  `  x )  e.  CC )
2925, 28syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  x  e.  ( ZZ>= `  ( N  -  1
) ) )  -> 
(  _I  `  x
)  e.  CC )
30 mulcl 8087 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
3130adantl 277 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
3217, 23, 29, 31seq3m1 10655 . . . . . 6  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  x.  (  _I  `  N ) ) )
3317, 29, 31seq3-1 10644 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  (  _I  `  ( N  -  1
) ) )
34 fvi 5659 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  ZZ  ->  (  _I  `  ( N  - 
1 ) )  =  ( N  -  1 ) )
3517, 34syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  _I 
`  ( N  - 
1 ) )  =  ( N  -  1 ) )
3633, 35eqtrd 2240 . . . . . . 7  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  ( N  - 
1 ) )
37 fvi 5659 . . . . . . 7  |-  ( N  e.  NN0  ->  (  _I 
`  N )  =  N )
3836, 37oveq12d 5985 . . . . . 6  |-  ( N  e.  NN0  ->  ( (  seq ( N  - 
1 ) (  x.  ,  _I  ) `  ( N  -  1
) )  x.  (  _I  `  N ) )  =  ( ( N  -  1 )  x.  N ) )
3932, 38eqtrd 2240 . . . . 5  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( ( N  -  1 )  x.  N ) )
40 subcl 8306 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
416, 8, 40sylancl 413 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  CC )
4241, 6mulcomd 8129 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  x.  N )  =  ( N  x.  ( N  -  1 ) ) )
4339, 42eqtrd 2240 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
4414, 43eqtrd 2240 . . 3  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
45 fac2 10913 . . . 4  |-  ( ! `
 2 )  =  2
4645a1i 9 . . 3  |-  ( N  e.  NN0  ->  ( ! `
 2 )  =  2 )
4744, 46oveq12d 5985 . 2  |-  ( N  e.  NN0  ->  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
)  =  ( ( N  x.  ( N  -  1 ) )  /  2 ) )
483, 47eqtrd 2240 1  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    _I cid 4353   ` cfv 5290  (class class class)co 5967   CCcc 7958   1c1 7961    + caddc 7963    x. cmul 7965    - cmin 8278    / cdiv 8780   NNcn 9071   2c2 9122   NN0cn0 9330   ZZcz 9407   ZZ>=cuz 9683    seqcseq 10629   !cfa 10907    _C cbc 10929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-fz 10166  df-seqfrec 10630  df-fac 10908  df-bc 10930
This theorem is referenced by:  bcp1m1  10947
  Copyright terms: Public domain W3C validator