ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn2 Unicode version

Theorem bcn2 10909
Description: Binomial coefficient:  N choose  2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )

Proof of Theorem bcn2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 9198 . . 3  |-  2  e.  NN
2 bcval5 10908 . . 3  |-  ( ( N  e.  NN0  /\  2  e.  NN )  ->  ( N  _C  2
)  =  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
) )
31, 2mpan2 425 . 2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( (  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! ` 
2 ) ) )
4 2m1e1 9154 . . . . . . . 8  |-  ( 2  -  1 )  =  1
54oveq2i 5955 . . . . . . 7  |-  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( ( N  - 
2 )  +  1 )
6 nn0cn 9305 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
7 2cn 9107 . . . . . . . . 9  |-  2  e.  CC
8 ax-1cn 8018 . . . . . . . . 9  |-  1  e.  CC
9 npncan 8293 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
107, 8, 9mp3an23 1342 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
116, 10syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  -  1 ) )
125, 11eqtr3id 2252 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  1 )  =  ( N  -  1 ) )
1312seqeq1d 10598 . . . . 5  |-  ( N  e.  NN0  ->  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  )  =  seq ( N  -  1 ) (  x.  ,  _I  ) )
1413fveq1d 5578 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )
)
15 nn0z 9392 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
16 peano2zm 9410 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
1715, 16syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  ZZ )
18 uzid 9662 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
1915, 18syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  N )
)
20 npcan 8281 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
216, 8, 20sylancl 413 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  +  1 )  =  N )
2221fveq2d 5580 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) )  =  (
ZZ>= `  N ) )
2319, 22eleqtrrd 2285 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
24 eluzelcn 9659 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  ( N  -  1 ) )  ->  x  e.  CC )
2524adantl 277 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  x  e.  ( ZZ>= `  ( N  -  1
) ) )  ->  x  e.  CC )
26 fvi 5636 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (  _I  `  x )  =  x )
2726eleq1d 2274 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
(  _I  `  x
)  e.  CC  <->  x  e.  CC ) )
2827ibir 177 . . . . . . . 8  |-  ( x  e.  CC  ->  (  _I  `  x )  e.  CC )
2925, 28syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  x  e.  ( ZZ>= `  ( N  -  1
) ) )  -> 
(  _I  `  x
)  e.  CC )
30 mulcl 8052 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
3130adantl 277 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
3217, 23, 29, 31seq3m1 10618 . . . . . 6  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  x.  (  _I  `  N ) ) )
3317, 29, 31seq3-1 10607 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  (  _I  `  ( N  -  1
) ) )
34 fvi 5636 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  ZZ  ->  (  _I  `  ( N  - 
1 ) )  =  ( N  -  1 ) )
3517, 34syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  _I 
`  ( N  - 
1 ) )  =  ( N  -  1 ) )
3633, 35eqtrd 2238 . . . . . . 7  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  ( N  - 
1 ) )
37 fvi 5636 . . . . . . 7  |-  ( N  e.  NN0  ->  (  _I 
`  N )  =  N )
3836, 37oveq12d 5962 . . . . . 6  |-  ( N  e.  NN0  ->  ( (  seq ( N  - 
1 ) (  x.  ,  _I  ) `  ( N  -  1
) )  x.  (  _I  `  N ) )  =  ( ( N  -  1 )  x.  N ) )
3932, 38eqtrd 2238 . . . . 5  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( ( N  -  1 )  x.  N ) )
40 subcl 8271 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
416, 8, 40sylancl 413 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  CC )
4241, 6mulcomd 8094 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  x.  N )  =  ( N  x.  ( N  -  1 ) ) )
4339, 42eqtrd 2238 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
4414, 43eqtrd 2238 . . 3  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
45 fac2 10876 . . . 4  |-  ( ! `
 2 )  =  2
4645a1i 9 . . 3  |-  ( N  e.  NN0  ->  ( ! `
 2 )  =  2 )
4744, 46oveq12d 5962 . 2  |-  ( N  e.  NN0  ->  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
)  =  ( ( N  x.  ( N  -  1 ) )  /  2 ) )
483, 47eqtrd 2238 1  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    _I cid 4335   ` cfv 5271  (class class class)co 5944   CCcc 7923   1c1 7926    + caddc 7928    x. cmul 7930    - cmin 8243    / cdiv 8745   NNcn 9036   2c2 9087   NN0cn0 9295   ZZcz 9372   ZZ>=cuz 9648    seqcseq 10592   !cfa 10870    _C cbc 10892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-fz 10131  df-seqfrec 10593  df-fac 10871  df-bc 10893
This theorem is referenced by:  bcp1m1  10910
  Copyright terms: Public domain W3C validator