ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn2 Unicode version

Theorem bcn2 10503
Description: Binomial coefficient:  N choose  2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )

Proof of Theorem bcn2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 8874 . . 3  |-  2  e.  NN
2 bcval5 10502 . . 3  |-  ( ( N  e.  NN0  /\  2  e.  NN )  ->  ( N  _C  2
)  =  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
) )
31, 2mpan2 421 . 2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( (  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! ` 
2 ) ) )
4 2m1e1 8831 . . . . . . . 8  |-  ( 2  -  1 )  =  1
54oveq2i 5778 . . . . . . 7  |-  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( ( N  - 
2 )  +  1 )
6 nn0cn 8980 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
7 2cn 8784 . . . . . . . . 9  |-  2  e.  CC
8 ax-1cn 7706 . . . . . . . . 9  |-  1  e.  CC
9 npncan 7976 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
107, 8, 9mp3an23 1307 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
116, 10syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  -  1 ) )
125, 11syl5eqr 2184 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  1 )  =  ( N  -  1 ) )
1312seqeq1d 10217 . . . . 5  |-  ( N  e.  NN0  ->  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  )  =  seq ( N  -  1 ) (  x.  ,  _I  ) )
1413fveq1d 5416 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )
)
15 nn0z 9067 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
16 peano2zm 9085 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
1715, 16syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  ZZ )
18 uzid 9333 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
1915, 18syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  N )
)
20 npcan 7964 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
216, 8, 20sylancl 409 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  +  1 )  =  N )
2221fveq2d 5418 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) )  =  (
ZZ>= `  N ) )
2319, 22eleqtrrd 2217 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
24 eluzelcn 9330 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  ( N  -  1 ) )  ->  x  e.  CC )
2524adantl 275 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  x  e.  ( ZZ>= `  ( N  -  1
) ) )  ->  x  e.  CC )
26 fvi 5471 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (  _I  `  x )  =  x )
2726eleq1d 2206 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
(  _I  `  x
)  e.  CC  <->  x  e.  CC ) )
2827ibir 176 . . . . . . . 8  |-  ( x  e.  CC  ->  (  _I  `  x )  e.  CC )
2925, 28syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  x  e.  ( ZZ>= `  ( N  -  1
) ) )  -> 
(  _I  `  x
)  e.  CC )
30 mulcl 7740 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
3130adantl 275 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
3217, 23, 29, 31seq3m1 10234 . . . . . 6  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  x.  (  _I  `  N ) ) )
3317, 29, 31seq3-1 10226 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  (  _I  `  ( N  -  1
) ) )
34 fvi 5471 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  ZZ  ->  (  _I  `  ( N  - 
1 ) )  =  ( N  -  1 ) )
3517, 34syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  _I 
`  ( N  - 
1 ) )  =  ( N  -  1 ) )
3633, 35eqtrd 2170 . . . . . . 7  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  ( N  - 
1 ) )
37 fvi 5471 . . . . . . 7  |-  ( N  e.  NN0  ->  (  _I 
`  N )  =  N )
3836, 37oveq12d 5785 . . . . . 6  |-  ( N  e.  NN0  ->  ( (  seq ( N  - 
1 ) (  x.  ,  _I  ) `  ( N  -  1
) )  x.  (  _I  `  N ) )  =  ( ( N  -  1 )  x.  N ) )
3932, 38eqtrd 2170 . . . . 5  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( ( N  -  1 )  x.  N ) )
40 subcl 7954 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
416, 8, 40sylancl 409 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  CC )
4241, 6mulcomd 7780 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  x.  N )  =  ( N  x.  ( N  -  1 ) ) )
4339, 42eqtrd 2170 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
4414, 43eqtrd 2170 . . 3  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
45 fac2 10470 . . . 4  |-  ( ! `
 2 )  =  2
4645a1i 9 . . 3  |-  ( N  e.  NN0  ->  ( ! `
 2 )  =  2 )
4744, 46oveq12d 5785 . 2  |-  ( N  e.  NN0  ->  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
)  =  ( ( N  x.  ( N  -  1 ) )  /  2 ) )
483, 47eqtrd 2170 1  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    _I cid 4205   ` cfv 5118  (class class class)co 5767   CCcc 7611   1c1 7614    + caddc 7616    x. cmul 7618    - cmin 7926    / cdiv 8425   NNcn 8713   2c2 8764   NN0cn0 8970   ZZcz 9047   ZZ>=cuz 9319    seqcseq 10211   !cfa 10464    _C cbc 10486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-fz 9784  df-seqfrec 10212  df-fac 10465  df-bc 10487
This theorem is referenced by:  bcp1m1  10504
  Copyright terms: Public domain W3C validator