ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcn2 Unicode version

Theorem bcn2 10397
Description: Binomial coefficient:  N choose  2. (Contributed by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bcn2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )

Proof of Theorem bcn2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2nn 8779 . . 3  |-  2  e.  NN
2 bcval5 10396 . . 3  |-  ( ( N  e.  NN0  /\  2  e.  NN )  ->  ( N  _C  2
)  =  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
) )
31, 2mpan2 419 . 2  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( (  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! ` 
2 ) ) )
4 2m1e1 8742 . . . . . . . 8  |-  ( 2  -  1 )  =  1
54oveq2i 5737 . . . . . . 7  |-  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( ( N  - 
2 )  +  1 )
6 nn0cn 8885 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  CC )
7 2cn 8695 . . . . . . . . 9  |-  2  e.  CC
8 ax-1cn 7632 . . . . . . . . 9  |-  1  e.  CC
9 npncan 7900 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  2  e.  CC  /\  1  e.  CC )  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
107, 8, 9mp3an23 1288 . . . . . . . 8  |-  ( N  e.  CC  ->  (
( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  - 
1 ) )
116, 10syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  ( 2  -  1 ) )  =  ( N  -  1 ) )
125, 11syl5eqr 2159 . . . . . 6  |-  ( N  e.  NN0  ->  ( ( N  -  2 )  +  1 )  =  ( N  -  1 ) )
1312seqeq1d 10111 . . . . 5  |-  ( N  e.  NN0  ->  seq (
( N  -  2 )  +  1 ) (  x.  ,  _I  )  =  seq ( N  -  1 ) (  x.  ,  _I  ) )
1413fveq1d 5375 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )
)
15 nn0z 8972 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ZZ )
16 peano2zm 8990 . . . . . . . 8  |-  ( N  e.  ZZ  ->  ( N  -  1 )  e.  ZZ )
1715, 16syl 14 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  ZZ )
18 uzid 9236 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
1915, 18syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  N )
)
20 npcan 7888 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  - 
1 )  +  1 )  =  N )
216, 8, 20sylancl 407 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  +  1 )  =  N )
2221fveq2d 5377 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ZZ>= `  ( ( N  - 
1 )  +  1 ) )  =  (
ZZ>= `  N ) )
2319, 22eleqtrrd 2192 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ( ZZ>= `  ( ( N  -  1 )  +  1 ) ) )
24 eluzelcn 9233 . . . . . . . . 9  |-  ( x  e.  ( ZZ>= `  ( N  -  1 ) )  ->  x  e.  CC )
2524adantl 273 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  x  e.  ( ZZ>= `  ( N  -  1
) ) )  ->  x  e.  CC )
26 fvi 5430 . . . . . . . . . 10  |-  ( x  e.  CC  ->  (  _I  `  x )  =  x )
2726eleq1d 2181 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
(  _I  `  x
)  e.  CC  <->  x  e.  CC ) )
2827ibir 176 . . . . . . . 8  |-  ( x  e.  CC  ->  (  _I  `  x )  e.  CC )
2925, 28syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  x  e.  ( ZZ>= `  ( N  -  1
) ) )  -> 
(  _I  `  x
)  e.  CC )
30 mulcl 7665 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
3130adantl 273 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
3217, 23, 29, 31seq3m1 10128 . . . . . 6  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  x.  (  _I  `  N ) ) )
3317, 29, 31seq3-1 10120 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  (  _I  `  ( N  -  1
) ) )
34 fvi 5430 . . . . . . . . 9  |-  ( ( N  -  1 )  e.  ZZ  ->  (  _I  `  ( N  - 
1 ) )  =  ( N  -  1 ) )
3517, 34syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  (  _I 
`  ( N  - 
1 ) )  =  ( N  -  1 ) )
3633, 35eqtrd 2145 . . . . . . 7  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  ( N  -  1 ) )  =  ( N  - 
1 ) )
37 fvi 5430 . . . . . . 7  |-  ( N  e.  NN0  ->  (  _I 
`  N )  =  N )
3836, 37oveq12d 5744 . . . . . 6  |-  ( N  e.  NN0  ->  ( (  seq ( N  - 
1 ) (  x.  ,  _I  ) `  ( N  -  1
) )  x.  (  _I  `  N ) )  =  ( ( N  -  1 )  x.  N ) )
3932, 38eqtrd 2145 . . . . 5  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( ( N  -  1 )  x.  N ) )
40 subcl 7878 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
416, 8, 40sylancl 407 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  -  1 )  e.  CC )
4241, 6mulcomd 7705 . . . . 5  |-  ( N  e.  NN0  ->  ( ( N  -  1 )  x.  N )  =  ( N  x.  ( N  -  1 ) ) )
4339, 42eqtrd 2145 . . . 4  |-  ( N  e.  NN0  ->  (  seq ( N  -  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
4414, 43eqtrd 2145 . . 3  |-  ( N  e.  NN0  ->  (  seq ( ( N  - 
2 )  +  1 ) (  x.  ,  _I  ) `  N )  =  ( N  x.  ( N  -  1
) ) )
45 fac2 10364 . . . 4  |-  ( ! `
 2 )  =  2
4645a1i 9 . . 3  |-  ( N  e.  NN0  ->  ( ! `
 2 )  =  2 )
4744, 46oveq12d 5744 . 2  |-  ( N  e.  NN0  ->  ( (  seq ( ( N  -  2 )  +  1 ) (  x.  ,  _I  ) `  N )  /  ( ! `  2 )
)  =  ( ( N  x.  ( N  -  1 ) )  /  2 ) )
483, 47eqtrd 2145 1  |-  ( N  e.  NN0  ->  ( N  _C  2 )  =  ( ( N  x.  ( N  -  1
) )  /  2
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1312    e. wcel 1461    _I cid 4168   ` cfv 5079  (class class class)co 5726   CCcc 7539   1c1 7542    + caddc 7544    x. cmul 7546    - cmin 7850    / cdiv 8339   NNcn 8624   2c2 8675   NN0cn0 8875   ZZcz 8952   ZZ>=cuz 9222    seqcseq 10105   !cfa 10358    _C cbc 10380
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rmo 2396  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-if 3439  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-po 4176  df-iso 4177  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256  df-div 8340  df-inn 8625  df-2 8683  df-n0 8876  df-z 8953  df-uz 9223  df-q 9308  df-fz 9678  df-seqfrec 10106  df-fac 10359  df-bc 10381
This theorem is referenced by:  bcp1m1  10398
  Copyright terms: Public domain W3C validator