ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnqpri Unicode version

Theorem ltnqpri 7706
Description: We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
Assertion
Ref Expression
ltnqpri  |-  ( A 
<Q  B  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
Distinct variable groups:    A, l    u, A    B, l    u, B

Proof of Theorem ltnqpri
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7477 . . . . . . . 8  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4726 . . . . . . 7  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
32simpld 112 . . . . . 6  |-  ( A 
<Q  B  ->  A  e. 
Q. )
4 nqprlu 7659 . . . . . 6  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( A 
<Q  B  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
62simprd 114 . . . . . 6  |-  ( A 
<Q  B  ->  B  e. 
Q. )
7 nqprlu 7659 . . . . . 6  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
86, 7syl 14 . . . . 5  |-  ( A 
<Q  B  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
9 ltdfpr 7618 . . . . 5  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ) )
105, 8, 9syl2anc 411 . . . 4  |-  ( A 
<Q  B  ->  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ) )
11 vex 2774 . . . . . . 7  |-  x  e. 
_V
12 breq2 4047 . . . . . . 7  |-  ( u  =  x  ->  ( A  <Q  u  <->  A  <Q  x ) )
13 ltnqex 7661 . . . . . . . 8  |-  { l  |  l  <Q  A }  e.  _V
14 gtnqex 7662 . . . . . . . 8  |-  { u  |  A  <Q  u }  e.  _V
1513, 14op2nd 6232 . . . . . . 7  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
1611, 12, 15elab2 2920 . . . . . 6  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  x )
17 breq1 4046 . . . . . . 7  |-  ( l  =  x  ->  (
l  <Q  B  <->  x  <Q  B ) )
18 ltnqex 7661 . . . . . . . 8  |-  { l  |  l  <Q  B }  e.  _V
19 gtnqex 7662 . . . . . . . 8  |-  { u  |  B  <Q  u }  e.  _V
2018, 19op1st 6231 . . . . . . 7  |-  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  =  { l  |  l 
<Q  B }
2111, 17, 20elab2 2920 . . . . . 6  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  <->  x  <Q  B )
2216, 21anbi12i 460 . . . . 5  |-  ( ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  ( A  <Q  x  /\  x  <Q  B ) )
2322rexbii 2512 . . . 4  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
2410, 23bitrdi 196 . . 3  |-  ( A 
<Q  B  ->  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
25 ltbtwnnqq 7527 . . 3  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
2624, 25bitr4di 198 . 2  |-  ( A 
<Q  B  ->  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  A  <Q  B ) )
2726ibir 177 1  |-  ( A 
<Q  B  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2175   {cab 2190   E.wrex 2484   <.cop 3635   class class class wbr 4043   ` cfv 5270   1stc1st 6223   2ndc2nd 6224   Q.cnq 7392    <Q cltq 7397   P.cnp 7403    <P cltp 7407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-rq 7464  df-ltnqqs 7465  df-inp 7578  df-iltp 7582
This theorem is referenced by:  caucvgprprlemk  7795  caucvgprprlemloccalc  7796  caucvgprprlemnjltk  7803  caucvgprprlemlol  7810  caucvgprprlemupu  7812  suplocexprlemloc  7833
  Copyright terms: Public domain W3C validator