ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltnqpri Unicode version

Theorem ltnqpri 7661
Description: We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
Assertion
Ref Expression
ltnqpri  |-  ( A 
<Q  B  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
Distinct variable groups:    A, l    u, A    B, l    u, B

Proof of Theorem ltnqpri
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ltrelnq 7432 . . . . . . . 8  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4715 . . . . . . 7  |-  ( A 
<Q  B  ->  ( A  e.  Q.  /\  B  e.  Q. ) )
32simpld 112 . . . . . 6  |-  ( A 
<Q  B  ->  A  e. 
Q. )
4 nqprlu 7614 . . . . . 6  |-  ( A  e.  Q.  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
53, 4syl 14 . . . . 5  |-  ( A 
<Q  B  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  e.  P. )
62simprd 114 . . . . . 6  |-  ( A 
<Q  B  ->  B  e. 
Q. )
7 nqprlu 7614 . . . . . 6  |-  ( B  e.  Q.  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
86, 7syl 14 . . . . 5  |-  ( A 
<Q  B  ->  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  e.  P. )
9 ltdfpr 7573 . . . . 5  |-  ( (
<. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  e.  P.  /\ 
<. { l  |  l 
<Q  B } ,  {
u  |  B  <Q  u } >.  e.  P. )  ->  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ) )
105, 8, 9syl2anc 411 . . . 4  |-  ( A 
<Q  B  ->  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) ) )
11 vex 2766 . . . . . . 7  |-  x  e. 
_V
12 breq2 4037 . . . . . . 7  |-  ( u  =  x  ->  ( A  <Q  u  <->  A  <Q  x ) )
13 ltnqex 7616 . . . . . . . 8  |-  { l  |  l  <Q  A }  e.  _V
14 gtnqex 7617 . . . . . . . 8  |-  { u  |  A  <Q  u }  e.  _V
1513, 14op2nd 6205 . . . . . . 7  |-  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  =  { u  |  A  <Q  u }
1611, 12, 15elab2 2912 . . . . . 6  |-  ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  <->  A  <Q  x )
17 breq1 4036 . . . . . . 7  |-  ( l  =  x  ->  (
l  <Q  B  <->  x  <Q  B ) )
18 ltnqex 7616 . . . . . . . 8  |-  { l  |  l  <Q  B }  e.  _V
19 gtnqex 7617 . . . . . . . 8  |-  { u  |  B  <Q  u }  e.  _V
2018, 19op1st 6204 . . . . . . 7  |-  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  =  { l  |  l 
<Q  B }
2111, 17, 20elab2 2912 . . . . . 6  |-  ( x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )  <->  x  <Q  B )
2216, 21anbi12i 460 . . . . 5  |-  ( ( x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  ( A  <Q  x  /\  x  <Q  B ) )
2322rexbii 2504 . . . 4  |-  ( E. x  e.  Q.  (
x  e.  ( 2nd `  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >. )  /\  x  e.  ( 1st `  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
)  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
2410, 23bitrdi 196 . . 3  |-  ( A 
<Q  B  ->  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) ) )
25 ltbtwnnqq 7482 . . 3  |-  ( A 
<Q  B  <->  E. x  e.  Q.  ( A  <Q  x  /\  x  <Q  B ) )
2624, 25bitr4di 198 . 2  |-  ( A 
<Q  B  ->  ( <. { l  |  l 
<Q  A } ,  {
u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >.  <->  A  <Q  B ) )
2726ibir 177 1  |-  ( A 
<Q  B  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   {cab 2182   E.wrex 2476   <.cop 3625   class class class wbr 4033   ` cfv 5258   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347    <Q cltq 7352   P.cnp 7358    <P cltp 7362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-pli 7372  df-mi 7373  df-lti 7374  df-plpq 7411  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-plqqs 7416  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533  df-iltp 7537
This theorem is referenced by:  caucvgprprlemk  7750  caucvgprprlemloccalc  7751  caucvgprprlemnjltk  7758  caucvgprprlemlol  7765  caucvgprprlemupu  7767  suplocexprlemloc  7788
  Copyright terms: Public domain W3C validator