Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltnqpri | Unicode version |
Description: We can order fractions via or . (Contributed by Jim Kingdon, 8-Jan-2021.) |
Ref | Expression |
---|---|
ltnqpri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelnq 7279 | . . . . . . . 8 | |
2 | 1 | brel 4637 | . . . . . . 7 |
3 | 2 | simpld 111 | . . . . . 6 |
4 | nqprlu 7461 | . . . . . 6 | |
5 | 3, 4 | syl 14 | . . . . 5 |
6 | 2 | simprd 113 | . . . . . 6 |
7 | nqprlu 7461 | . . . . . 6 | |
8 | 6, 7 | syl 14 | . . . . 5 |
9 | ltdfpr 7420 | . . . . 5 | |
10 | 5, 8, 9 | syl2anc 409 | . . . 4 |
11 | vex 2715 | . . . . . . 7 | |
12 | breq2 3969 | . . . . . . 7 | |
13 | ltnqex 7463 | . . . . . . . 8 | |
14 | gtnqex 7464 | . . . . . . . 8 | |
15 | 13, 14 | op2nd 6092 | . . . . . . 7 |
16 | 11, 12, 15 | elab2 2860 | . . . . . 6 |
17 | breq1 3968 | . . . . . . 7 | |
18 | ltnqex 7463 | . . . . . . . 8 | |
19 | gtnqex 7464 | . . . . . . . 8 | |
20 | 18, 19 | op1st 6091 | . . . . . . 7 |
21 | 11, 17, 20 | elab2 2860 | . . . . . 6 |
22 | 16, 21 | anbi12i 456 | . . . . 5 |
23 | 22 | rexbii 2464 | . . . 4 |
24 | 10, 23 | bitrdi 195 | . . 3 |
25 | ltbtwnnqq 7329 | . . 3 | |
26 | 24, 25 | bitr4di 197 | . 2 |
27 | 26 | ibir 176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wcel 2128 cab 2143 wrex 2436 cop 3563 class class class wbr 3965 cfv 5169 c1st 6083 c2nd 6084 cnq 7194 cltq 7199 cnp 7205 cltp 7209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-eprel 4249 df-id 4253 df-po 4256 df-iso 4257 df-iord 4326 df-on 4328 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-1o 6360 df-oadd 6364 df-omul 6365 df-er 6477 df-ec 6479 df-qs 6483 df-ni 7218 df-pli 7219 df-mi 7220 df-lti 7221 df-plpq 7258 df-mpq 7259 df-enq 7261 df-nqqs 7262 df-plqqs 7263 df-mqqs 7264 df-1nqqs 7265 df-rq 7266 df-ltnqqs 7267 df-inp 7380 df-iltp 7384 |
This theorem is referenced by: caucvgprprlemk 7597 caucvgprprlemloccalc 7598 caucvgprprlemnjltk 7605 caucvgprprlemlol 7612 caucvgprprlemupu 7614 suplocexprlemloc 7635 |
Copyright terms: Public domain | W3C validator |