| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibir | GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| ibir | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | ibi 176 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nii 706 elpr2 3660 eusv2i 4510 ffdm 5456 ov 6078 ovg 6098 nnacl 6579 elpm2r 6766 ltnqpri 7727 ltxrlt 8158 uzaddcl 9727 expcllem 10717 qexpclz 10727 1exp 10735 facnn 10894 fac0 10895 fac1 10896 bcn2 10931 hash2en 11010 znnen 12844 zrhval 14454 |
| Copyright terms: Public domain | W3C validator |