ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibir GIF version

Theorem ibir 177
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1 (𝜑 → (𝜓𝜑))
Assertion
Ref Expression
ibir (𝜑𝜓)

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3 (𝜑 → (𝜓𝜑))
21bicomd 141 . 2 (𝜑 → (𝜑𝜓))
32ibi 176 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nii  705  elpr2  3654  eusv2i  4501  ffdm  5445  ov  6064  ovg  6084  nnacl  6565  elpm2r  6752  ltnqpri  7706  ltxrlt  8137  uzaddcl  9706  expcllem  10693  qexpclz  10703  1exp  10711  facnn  10870  fac0  10871  fac1  10872  bcn2  10907  hash2en  10986  znnen  12711  zrhval  14321
  Copyright terms: Public domain W3C validator