ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibir GIF version

Theorem ibir 177
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1 (𝜑 → (𝜓𝜑))
Assertion
Ref Expression
ibir (𝜑𝜓)

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3 (𝜑 → (𝜓𝜑))
21bicomd 141 . 2 (𝜑 → (𝜑𝜓))
32ibi 176 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nii  706  elpr2  3660  eusv2i  4510  ffdm  5456  ov  6078  ovg  6098  nnacl  6579  elpm2r  6766  ltnqpri  7727  ltxrlt  8158  uzaddcl  9727  expcllem  10717  qexpclz  10727  1exp  10735  facnn  10894  fac0  10895  fac1  10896  bcn2  10931  hash2en  11010  znnen  12844  zrhval  14454
  Copyright terms: Public domain W3C validator