ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibir GIF version

Theorem ibir 177
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1 (𝜑 → (𝜓𝜑))
Assertion
Ref Expression
ibir (𝜑𝜓)

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3 (𝜑 → (𝜓𝜑))
21bicomd 141 . 2 (𝜑 → (𝜑𝜓))
32ibi 176 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  pm5.21nii  709  elpr2  3688  eusv2i  4545  ffdm  5493  ov  6123  ovg  6143  nnacl  6624  elpm2r  6811  ltnqpri  7777  ltxrlt  8208  uzaddcl  9777  expcllem  10767  qexpclz  10777  1exp  10785  facnn  10944  fac0  10945  fac1  10946  bcn2  10981  hash2en  11060  znnen  12964  zrhval  14575
  Copyright terms: Public domain W3C validator