ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ibir GIF version

Theorem ibir 176
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.)
Hypothesis
Ref Expression
ibir.1 (𝜑 → (𝜓𝜑))
Assertion
Ref Expression
ibir (𝜑𝜓)

Proof of Theorem ibir
StepHypRef Expression
1 ibir.1 . . 3 (𝜑 → (𝜓𝜑))
21bicomd 140 . 2 (𝜑 → (𝜑𝜓))
32ibi 175 1 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  pm5.21nii  694  elpr2  3598  eusv2i  4433  ffdm  5358  ov  5961  ovg  5980  nnacl  6448  elpm2r  6632  ltnqpri  7535  ltxrlt  7964  uzaddcl  9524  expcllem  10466  qexpclz  10476  1exp  10484  facnn  10640  fac0  10641  fac1  10642  bcn2  10677  znnen  12331
  Copyright terms: Public domain W3C validator