| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibir | GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| ibir | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | ibi 176 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nii 705 elpr2 3654 eusv2i 4501 ffdm 5445 ov 6064 ovg 6084 nnacl 6565 elpm2r 6752 ltnqpri 7706 ltxrlt 8137 uzaddcl 9706 expcllem 10693 qexpclz 10703 1exp 10711 facnn 10870 fac0 10871 fac1 10872 bcn2 10907 hash2en 10986 znnen 12711 zrhval 14321 |
| Copyright terms: Public domain | W3C validator |