| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ibir | GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
| Ref | Expression |
|---|---|
| ibir | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
| 2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| 3 | 2 | ibi 176 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.21nii 709 elpr2 3688 eusv2i 4545 ffdm 5493 ov 6123 ovg 6143 nnacl 6624 elpm2r 6811 ltnqpri 7777 ltxrlt 8208 uzaddcl 9777 expcllem 10767 qexpclz 10777 1exp 10785 facnn 10944 fac0 10945 fac1 10946 bcn2 10981 hash2en 11060 znnen 12964 zrhval 14575 |
| Copyright terms: Public domain | W3C validator |