![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ibir | GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 22-Jul-2004.) |
Ref | Expression |
---|---|
ibir.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜑)) |
Ref | Expression |
---|---|
ibir | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ibir.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜑)) | |
2 | 1 | bicomd 141 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
3 | 2 | ibi 176 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.21nii 705 elpr2 3640 eusv2i 4486 ffdm 5424 ov 6038 ovg 6057 nnacl 6533 elpm2r 6720 ltnqpri 7654 ltxrlt 8085 uzaddcl 9651 expcllem 10621 qexpclz 10631 1exp 10639 facnn 10798 fac0 10799 fac1 10800 bcn2 10835 znnen 12555 zrhval 14105 |
Copyright terms: Public domain | W3C validator |