ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwun GIF version

Theorem ifelpwun 4534
Description: Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.)
Hypotheses
Ref Expression
ifelpwun.1 𝐴 ∈ V
ifelpwun.2 𝐵 ∈ V
Assertion
Ref Expression
ifelpwun if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵)

Proof of Theorem ifelpwun
StepHypRef Expression
1 ifelpwun.1 . 2 𝐴 ∈ V
2 ifelpwun.2 . 2 𝐵 ∈ V
3 ifelpwung 4532 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
41, 2, 3mp2an 426 1 if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wcel 2177  Vcvv 2773  cun 3165  ifcif 3572  𝒫 cpw 3617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-if 3573  df-pw 3619  df-sn 3640  df-pr 3641  df-uni 3853
This theorem is referenced by:  fmelpw1o  15816  bj-charfun  15817
  Copyright terms: Public domain W3C validator