ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifelpwun GIF version

Theorem ifelpwun 4485
Description: Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.)
Hypotheses
Ref Expression
ifelpwun.1 𝐴 ∈ V
ifelpwun.2 𝐵 ∈ V
Assertion
Ref Expression
ifelpwun if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵)

Proof of Theorem ifelpwun
StepHypRef Expression
1 ifelpwun.1 . 2 𝐴 ∈ V
2 ifelpwun.2 . 2 𝐵 ∈ V
3 ifelpwung 4483 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵))
41, 2, 3mp2an 426 1 if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wcel 2148  Vcvv 2739  cun 3129  ifcif 3536  𝒫 cpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812
This theorem is referenced by:  fmelpw1o  14698  bj-charfun  14699
  Copyright terms: Public domain W3C validator