| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifelpwun | GIF version | ||
| Description: Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.) |
| Ref | Expression |
|---|---|
| ifelpwun.1 | ⊢ 𝐴 ∈ V |
| ifelpwun.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| ifelpwun | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifelpwun.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ifelpwun.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | ifelpwung 4572 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) | |
| 4 | 1, 2, 3 | mp2an 426 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ∪ cun 3195 ifcif 3602 𝒫 cpw 3649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-uni 3889 |
| This theorem is referenced by: fmelpw1o 7440 bj-charfun 16194 |
| Copyright terms: Public domain | W3C validator |