![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifelpwun | GIF version |
Description: Existence of a conditional class, quantitative version (inference form). (Contributed by BJ, 15-Aug-2024.) |
Ref | Expression |
---|---|
ifelpwun.1 | ⊢ 𝐴 ∈ V |
ifelpwun.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
ifelpwun | ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifelpwun.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ifelpwun.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | ifelpwung 4513 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵)) | |
4 | 1, 2, 3 | mp2an 426 | 1 ⊢ if(𝜑, 𝐴, 𝐵) ∈ 𝒫 (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 Vcvv 2760 ∪ cun 3152 ifcif 3558 𝒫 cpw 3602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-uni 3837 |
This theorem is referenced by: fmelpw1o 15368 bj-charfun 15369 |
Copyright terms: Public domain | W3C validator |