| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifeq2 | GIF version | ||
| Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| ifeq2 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 2755 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
| 2 | 1 | uneq2d 3317 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑})) |
| 3 | dfif6 3563 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) | |
| 4 | dfif6 3563 | . 2 ⊢ if(𝜑, 𝐶, 𝐵) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 {crab 2479 ∪ cun 3155 ifcif 3561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3562 |
| This theorem is referenced by: ifeq12 3577 ifeq2d 3579 ifbieq2i 3584 xrmaxiflemcom 11414 |
| Copyright terms: Public domain | W3C validator |