ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinab GIF version

Theorem iinab 3934
Description: Indexed intersection of a class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinab 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem iinab
StepHypRef Expression
1 nfcv 2312 . . . 4 𝑦𝐴
2 nfab1 2314 . . . 4 𝑦{𝑦𝜑}
31, 2nfiinxy 3900 . . 3 𝑦 𝑥𝐴 {𝑦𝜑}
4 nfab1 2314 . . 3 𝑦{𝑦 ∣ ∀𝑥𝐴 𝜑}
53, 4cleqf 2337 . 2 ( 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑦(𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑}))
6 abid 2158 . . . 4 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
76ralbii 2476 . . 3 (∀𝑥𝐴 𝑦 ∈ {𝑦𝜑} ↔ ∀𝑥𝐴 𝜑)
8 vex 2733 . . . 4 𝑦 ∈ V
9 eliin 3878 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∀𝑥𝐴 𝑦 ∈ {𝑦𝜑}))
108, 9ax-mp 5 . . 3 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ ∀𝑥𝐴 𝑦 ∈ {𝑦𝜑})
11 abid 2158 . . 3 (𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑} ↔ ∀𝑥𝐴 𝜑)
127, 10, 113bitr4i 211 . 2 (𝑦 𝑥𝐴 {𝑦𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥𝐴 𝜑})
135, 12mpgbir 1446 1 𝑥𝐴 {𝑦𝜑} = {𝑦 ∣ ∀𝑥𝐴 𝜑}
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wcel 2141  {cab 2156  wral 2448  Vcvv 2730   ciin 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-iin 3876
This theorem is referenced by:  iinrabm  3935
  Copyright terms: Public domain W3C validator