![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iinab | GIF version |
Description: Indexed intersection of a class builder. (Contributed by NM, 6-Dec-2011.) |
Ref | Expression |
---|---|
iinab | ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2336 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | nfab1 2338 | . . . 4 ⊢ Ⅎ𝑦{𝑦 ∣ 𝜑} | |
3 | 1, 2 | nfiinxy 3939 | . . 3 ⊢ Ⅎ𝑦∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} |
4 | nfab1 2338 | . . 3 ⊢ Ⅎ𝑦{𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} | |
5 | 3, 4 | cleqf 2361 | . 2 ⊢ (∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑦(𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑})) |
6 | abid 2181 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
7 | 6 | ralbii 2500 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) |
8 | vex 2763 | . . . 4 ⊢ 𝑦 ∈ V | |
9 | eliin 3917 | . . . 4 ⊢ (𝑦 ∈ V → (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
10 | 8, 9 | ax-mp 5 | . . 3 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝑦 ∈ {𝑦 ∣ 𝜑}) |
11 | abid 2181 | . . 3 ⊢ (𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} ↔ ∀𝑥 ∈ 𝐴 𝜑) | |
12 | 7, 10, 11 | 3bitr4i 212 | . 2 ⊢ (𝑦 ∈ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑}) |
13 | 5, 12 | mpgbir 1464 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 {𝑦 ∣ 𝜑} = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝜑} |
Colors of variables: wff set class |
Syntax hints: ↔ wb 105 = wceq 1364 ∈ wcel 2164 {cab 2179 ∀wral 2472 Vcvv 2760 ∩ ciin 3913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-iin 3915 |
This theorem is referenced by: iinrabm 3975 |
Copyright terms: Public domain | W3C validator |