ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinpw GIF version

Theorem iinpw 3963
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem iinpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 3847 . . . 4 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
2 vex 2733 . . . . . 6 𝑦 ∈ V
32elpw 3572 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
43ralbii 2476 . . . 4 (∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦𝑥)
51, 4bitr4i 186 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
62elpw 3572 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
7 eliin 3878 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥))
82, 7ax-mp 5 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
95, 6, 83bitr4i 211 . 2 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝒫 𝑥)
109eqriv 2167 1 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  wss 3121  𝒫 cpw 3566   cint 3831   ciin 3874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-int 3832  df-iin 3876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator