ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinpw GIF version

Theorem iinpw 3956
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem iinpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 3840 . . . 4 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
2 vex 2729 . . . . . 6 𝑦 ∈ V
32elpw 3565 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
43ralbii 2472 . . . 4 (∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦𝑥)
51, 4bitr4i 186 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
62elpw 3565 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
7 eliin 3871 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥))
82, 7ax-mp 5 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
95, 6, 83bitr4i 211 . 2 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝒫 𝑥)
109eqriv 2162 1 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Colors of variables: wff set class
Syntax hints:  wb 104   = wceq 1343  wcel 2136  wral 2444  Vcvv 2726  wss 3116  𝒫 cpw 3559   cint 3824   ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-int 3825  df-iin 3869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator