ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinpw GIF version

Theorem iinpw 4007
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem iinpw
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssint 3890 . . . 4 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
2 vex 2766 . . . . . 6 𝑦 ∈ V
32elpw 3611 . . . . 5 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
43ralbii 2503 . . . 4 (∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦𝑥)
51, 4bitr4i 187 . . 3 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
62elpw 3611 . . 3 (𝑦 ∈ 𝒫 𝐴𝑦 𝐴)
7 eliin 3921 . . . 4 (𝑦 ∈ V → (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥))
82, 7ax-mp 5 . . 3 (𝑦 𝑥𝐴 𝒫 𝑥 ↔ ∀𝑥𝐴 𝑦 ∈ 𝒫 𝑥)
95, 6, 83bitr4i 212 . 2 (𝑦 ∈ 𝒫 𝐴𝑦 𝑥𝐴 𝒫 𝑥)
109eqriv 2193 1 𝒫 𝐴 = 𝑥𝐴 𝒫 𝑥
Colors of variables: wff set class
Syntax hints:  wb 105   = wceq 1364  wcel 2167  wral 2475  Vcvv 2763  wss 3157  𝒫 cpw 3605   cint 3874   ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-int 3875  df-iin 3919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator