Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imass1 | GIF version |
Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
Ref | Expression |
---|---|
imass1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres 4910 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) | |
2 | rnss 4834 | . . 3 ⊢ ((𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶) → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) |
4 | df-ima 4617 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
5 | df-ima 4617 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
6 | 3, 4, 5 | 3sstr4g 3185 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3116 ran crn 4605 ↾ cres 4606 “ cima 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 |
This theorem is referenced by: imasnopn 12949 |
Copyright terms: Public domain | W3C validator |