![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imass1 | GIF version |
Description: Subset theorem for image. (Contributed by NM, 16-Mar-2004.) |
Ref | Expression |
---|---|
imass1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssres 4935 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶)) | |
2 | rnss 4859 | . . 3 ⊢ ((𝐴 ↾ 𝐶) ⊆ (𝐵 ↾ 𝐶) → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ran (𝐴 ↾ 𝐶) ⊆ ran (𝐵 ↾ 𝐶)) |
4 | df-ima 4641 | . 2 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
5 | df-ima 4641 | . 2 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
6 | 3, 4, 5 | 3sstr4g 3200 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 “ 𝐶) ⊆ (𝐵 “ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3131 ran crn 4629 ↾ cres 4630 “ cima 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-cnv 4636 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 |
This theorem is referenced by: imasnopn 13838 |
Copyright terms: Public domain | W3C validator |