ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnss Unicode version

Theorem rnss 4834
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
rnss  |-  ( A 
C_  B  ->  ran  A 
C_  ran  B )

Proof of Theorem rnss
StepHypRef Expression
1 cnvss 4777 . . 3  |-  ( A 
C_  B  ->  `' A  C_  `' B )
2 dmss 4803 . . 3  |-  ( `' A  C_  `' B  ->  dom  `' A  C_  dom  `' B )
31, 2syl 14 . 2  |-  ( A 
C_  B  ->  dom  `' A  C_  dom  `' B
)
4 df-rn 4615 . 2  |-  ran  A  =  dom  `' A
5 df-rn 4615 . 2  |-  ran  B  =  dom  `' B
63, 4, 53sstr4g 3185 1  |-  ( A 
C_  B  ->  ran  A 
C_  ran  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3116   `'ccnv 4603   dom cdm 4604   ran crn 4605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  imass1  4979  imass2  4980  rnxpss2  5037  ssxpbm  5039  ssxp2  5041  ssrnres  5046  funssxp  5357  fssres  5363  dff2  5629  fliftf  5767  1stcof  6131  2ndcof  6132  smores  6260  tfrcllembfn  6325  caserel  7052  frecuzrdgtcl  10347  lmss  12886  txss12  12906  txbasval  12907
  Copyright terms: Public domain W3C validator