ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exse2 Unicode version

Theorem exse2 5056
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse2  |-  ( R  e.  V  ->  R Se  A )

Proof of Theorem exse2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2493 . . . . 5  |-  { y  e.  A  |  y R x }  =  { y  |  ( y  e.  A  /\  y R x ) }
2 vex 2775 . . . . . . . 8  |-  y  e. 
_V
3 vex 2775 . . . . . . . 8  |-  x  e. 
_V
42, 3breldm 4882 . . . . . . 7  |-  ( y R x  ->  y  e.  dom  R )
54adantl 277 . . . . . 6  |-  ( ( y  e.  A  /\  y R x )  -> 
y  e.  dom  R
)
65abssi 3268 . . . . 5  |-  { y  |  ( y  e.  A  /\  y R x ) }  C_  dom  R
71, 6eqsstri 3225 . . . 4  |-  { y  e.  A  |  y R x }  C_  dom  R
8 dmexg 4942 . . . 4  |-  ( R  e.  V  ->  dom  R  e.  _V )
9 ssexg 4183 . . . 4  |-  ( ( { y  e.  A  |  y R x }  C_  dom  R  /\  dom  R  e.  _V )  ->  { y  e.  A  |  y R x }  e.  _V )
107, 8, 9sylancr 414 . . 3  |-  ( R  e.  V  ->  { y  e.  A  |  y R x }  e.  _V )
1110ralrimivw 2580 . 2  |-  ( R  e.  V  ->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
12 df-se 4380 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
1311, 12sylibr 134 1  |-  ( R  e.  V  ->  R Se  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176   {cab 2191   A.wral 2484   {crab 2488   _Vcvv 2772    C_ wss 3166   class class class wbr 4044   Se wse 4376   dom cdm 4675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-se 4380  df-cnv 4683  df-dm 4685  df-rn 4686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator