ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exse2 Unicode version

Theorem exse2 4978
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse2  |-  ( R  e.  V  ->  R Se  A )

Proof of Theorem exse2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2453 . . . . 5  |-  { y  e.  A  |  y R x }  =  { y  |  ( y  e.  A  /\  y R x ) }
2 vex 2729 . . . . . . . 8  |-  y  e. 
_V
3 vex 2729 . . . . . . . 8  |-  x  e. 
_V
42, 3breldm 4808 . . . . . . 7  |-  ( y R x  ->  y  e.  dom  R )
54adantl 275 . . . . . 6  |-  ( ( y  e.  A  /\  y R x )  -> 
y  e.  dom  R
)
65abssi 3217 . . . . 5  |-  { y  |  ( y  e.  A  /\  y R x ) }  C_  dom  R
71, 6eqsstri 3174 . . . 4  |-  { y  e.  A  |  y R x }  C_  dom  R
8 dmexg 4868 . . . 4  |-  ( R  e.  V  ->  dom  R  e.  _V )
9 ssexg 4121 . . . 4  |-  ( ( { y  e.  A  |  y R x }  C_  dom  R  /\  dom  R  e.  _V )  ->  { y  e.  A  |  y R x }  e.  _V )
107, 8, 9sylancr 411 . . 3  |-  ( R  e.  V  ->  { y  e.  A  |  y R x }  e.  _V )
1110ralrimivw 2540 . 2  |-  ( R  e.  V  ->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
12 df-se 4311 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
1311, 12sylibr 133 1  |-  ( R  e.  V  ->  R Se  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136   {cab 2151   A.wral 2444   {crab 2448   _Vcvv 2726    C_ wss 3116   class class class wbr 3982   Se wse 4307   dom cdm 4604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-se 4311  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator