ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exse2 Unicode version

Theorem exse2 5075
Description: Any set relation is set-like. (Contributed by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
exse2  |-  ( R  e.  V  ->  R Se  A )

Proof of Theorem exse2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2495 . . . . 5  |-  { y  e.  A  |  y R x }  =  { y  |  ( y  e.  A  /\  y R x ) }
2 vex 2779 . . . . . . . 8  |-  y  e. 
_V
3 vex 2779 . . . . . . . 8  |-  x  e. 
_V
42, 3breldm 4901 . . . . . . 7  |-  ( y R x  ->  y  e.  dom  R )
54adantl 277 . . . . . 6  |-  ( ( y  e.  A  /\  y R x )  -> 
y  e.  dom  R
)
65abssi 3276 . . . . 5  |-  { y  |  ( y  e.  A  /\  y R x ) }  C_  dom  R
71, 6eqsstri 3233 . . . 4  |-  { y  e.  A  |  y R x }  C_  dom  R
8 dmexg 4961 . . . 4  |-  ( R  e.  V  ->  dom  R  e.  _V )
9 ssexg 4199 . . . 4  |-  ( ( { y  e.  A  |  y R x }  C_  dom  R  /\  dom  R  e.  _V )  ->  { y  e.  A  |  y R x }  e.  _V )
107, 8, 9sylancr 414 . . 3  |-  ( R  e.  V  ->  { y  e.  A  |  y R x }  e.  _V )
1110ralrimivw 2582 . 2  |-  ( R  e.  V  ->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
12 df-se 4398 . 2  |-  ( R Se  A  <->  A. x  e.  A  { y  e.  A  |  y R x }  e.  _V )
1311, 12sylibr 134 1  |-  ( R  e.  V  ->  R Se  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178   {cab 2193   A.wral 2486   {crab 2490   _Vcvv 2776    C_ wss 3174   class class class wbr 4059   Se wse 4394   dom cdm 4693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-se 4398  df-cnv 4701  df-dm 4703  df-rn 4704
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator